• Journal of Atmospheric and Environmental Optics
  • Vol. 13, Issue 5, 342 (2018)
Hongliang MA1、2, Mingguo SUN2, Yiheng WU1, Zhendong WANG1, and Zhensong CAO2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2018.05.002 Cite this Article
    MA Hongliang, SUN Mingguo, WU Yiheng, WANG Zhendong, CAO Zhensong. Research Progress of Water Vapour Continuum in Infrared Spectral Regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 342 Copy Citation Text show less
    References

    [1] Clough S A, Iacono M J, Moncet J L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor[J].Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15761-15785.

    [2] Kilsby C G, Edwards D P, Saunders R W,et al. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(506): 715-748.

    [3] Shine K P, Ptashnik I V, Radel G. The water vapour continuum: Brief history and recent developments[J].Surveys in Geophysics, 2012, 33(3-4): 535-555.

    [4] Rothman L S, Gordon I E, Babikov Y,et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

    [5] Shine K P, Campargue A, Mondelain D,et al. The water vapour continuum in near-infrared windows-Current understanding and prospects for its inclusion in spectroscopic databases[J]. Journal of Molecular Spectroscopy, 2016, 327: 193-208.

    [6] Viktorova A A, Zhevakin S A. Absorption of microradiowaves in air by the dimers of water vapor (Microradiowave absorption in air by water vapor dimers)[C]//AKADEMIIA NAUK SSSR, DOKLADY, 1966, 171: 1061-1064.

    [7] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600~1000 cm_1 region[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541.

    [8] Arefev V N, Dianov-Klokov V I. Attenuation of 10.6μm radiation by water vapor and the role of (H2O)2 dimers[J]. Optics and Spectroscopy, 1977, 42(5): 488-492.

    [9] Vigasin A A. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64(1): 25-40.

    [10] Ptashnik I V, Smith K M, Shine K P,et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000-5600 cm_1: Evidence for water dimmers[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408.

    [11] Ptashnik I V, Shine K P, Vigasin A A. Water vapour self-continuum and water dimers. 1. Analysis of recent work[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2011(112): 1286-1303.

    [12] Elsasser W M. Far infrared absorption of atmospheric water vapor[J].Astrophysical Journal, 1938, 87(5): 497-507.

    [13] Clough S A, Kneizys F X, Davies R W. Line shape and the water vapor continuum[J].Atmospheric Research, 1989, 23(3): 229-241.

    [14] Tipping R H, Ma Q. Theory of the water vapor continuum and validations[J].Atmospheric Research, 1995, 3(1-2): 69-94.

    [15] Ma Q, Tipping R H, Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines[J].The Journal of Chemical Physics, 2008, 128(12): 124313.

    [16] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307.

    [17] Baranov Y I, Lafferty W J. The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm_1 atmospheric windows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1968): 2578-2589.

    [18] Hettner G. ber das ultrarote Absorptionsspektrum des Wasserdampfes[J].Annalen der Physik, 1918, 360(6): 476-496.

    [19] Elsasser W M. Far infrared absorption of atmospheric water vapor[J].The Astrophysical Journal, 1938, 87: 497.

    [20] Gebbie H A, Harding W R, Hilsum C,et al. Atmospheric transmission in the 1 to 14 μm region[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1951, 20(1084): 87-107.

    [21] Anthony R. Atmospheric absorption of solar infrared radiation[J].Physical Review, 1952, 85(4): 674.

    [22] Cowling T G. The absorption of water vapour in the far infra-red[J].Reports on Progress in Physics, 1942, 9(1): 29.

    [23] Strong J. Study of atmospheric absorption and emission in the infrared spectrum[J].Journal of the Franklin Institute, 1941, 232(1): 1-22.

    [24] Roach W T, Goody R M. Absorption and emission in the atmospheric window from 770 to 1250 cm_1[J]. Quarterly Journal of the Royal Meteorological Society, 1958, 84(362): 319-333.

    [25] Bignell K, Saiedy F, Sheppard P A. On the atmospheric infrared continuum[J].Journal of the Optical Society of America, 1963, 53(4): 466-479.

    [26] Fomin V V, Tvorogov S D. Formation of the far wings contour of spectral lines broadened by a foreign gas; analysis of exponential decrease of continuous absorption beyond the band head of the 4.3μm band of CO2[J]. Applied Optics, 1973, 12(3): 584-589.

    [27] Tvorogov S D, Nesmelova L I. Radiative processes in the band wings of atmospheric gases[J].Akademiia Nauk SSSR Fizika Atmosfery i Okeana, 1977, 12: 627-633.

    [28] Burch D E, Gryvnak D A, Pembrook J D. Investigation of the absorption of infrared radiation by atmospheric gases[R]. Philco-Ford Corp newport Beach CA Aeronutronic DIV, 1970.

    [29] Gryvnak D A, Burch D E. Infrared Absorption by CO2 and H2O[R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1978.

    [30] Fano U. Pressure broadening as a prototype of relaxation[J].Physical Review, 1963, 131(1): 259.

    [31] Rosenkranz P W. Pressure broadening of rotational bands. I. A statistical theory[J].The Journal of Chemical Physics, 1985, 83(12): 6139-6144.

    [32] Rosenkranz P W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm_1[J]. The Journal of Chemical Physics, 1987, 87(1): 163-170.

    [33] Ma Q, Tipping R H. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I[J].The Journal of Chemical Physics, 1991, 95(9): 6290-6301.

    [34] Ma Q, Tipping R H. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III[J].The Journal of Chemical Physics, 1992, 97(2): 818-828.

    [35] Ma Q, Tipping R H. The averaged density matrix in the coordinate representation: application to the calculation of the far-wing line shapes for H2O[J]. The Journal of Chemical Physics, 1999, 111(13): 5909-5921.

    [36] Ma Q, Tipping R H. The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O-H2O[J]. The Journal of Chemical Physics, 2002, 11(10): 4102-4115.

    [37] Cormier J G, Ciurylo R, Drummond J R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum[J].The Journal of Chemical Physics, 2002, 11(3): 1030-1034.

    [38] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307.

    [39] Klimeshina T E, Rodimova O B. Temperature dependence of the water vapor continuum absorption in the 3~5 μm spectral region[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 119: 77-83.

    [40] Penner S S, Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapor[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 1967, 7(4): 687-690.

    [41] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600~1000 cm_1 region[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541.

    [42] Bignell K J. The water-vapour infra‐red continuum[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 9(409): 390-403.

    [43] Aref’ev V N, Dianov-Klokov V I, Radionov V F,et al. Laboratory measurements of attenuation of CO2 laser radiation by pure water vapor[J]. Optics and Spectroscopy, 1975, 39(5): 560-561.

    [44] Aref’ev V N, Dianov-Klokov V I. Attenuation of 10.6μm radiation by water vapor and the role of (H2O)2 dimers[J]. Optics and Spectroscopy, 1977, 42: 488-492.

    [45] Hinderling J, Sigrist M W, Kneubühl F K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14μm atmospheric window[J]. Infrared Physics, 1987, 27(2): 63-120.

    [46] Vaida V, Daniel J S, Kjaergaard H G,et al. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer[J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(575): 1627-1643.

    [47] Schofield D P, Kjaergaard H G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer[J].Physical Chemistry Chemical Physics, 2003, 5(15): 3100-3105.

    [48] Kjaergaard H G, Garden A L, Chaban G M,et al. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches[J]. The Journal of Physical Chemistry A, 2008, 112(18): 4324-4335.

    [49] Garden A L, Halonen L, Kjaergaard H G. Calculated band profiles of the OH-stretching transitions in water dimer[J].The Journal of Physical Chemistry A, 2008, 112(32): 7439-7447.

    [50] Ptashnik I V, Smith K M, Shine K P,et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000~5600 cm_1: Evidence for water dimmers[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408.

    [51] Paynter D J, Ptashnik I V, Shine K P,et al. Pure water vapor continuum measurements between 3100 and 4400 cm_1: Evidence for water dimer absorption in near atmospheric conditions[J]. Geophysical Research Letters, 2007, 34(12): L12808.

    [52] Vigasin A A. On the spectroscopic manifestations of weakly bound complexes in rarefied gases[J].Chemical Physics Letters, 1985, 117(1): 85-88.

    [53] Vigasin A A. Bound, metastable and free states of bimolecular complexes[J].Infrared Physics, 1991, 32: 461-470.

    [54] Vigasin A A. Bimolecular absorption in atmospheric gases[J].Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, 2003, 27: 23-47.

    [55] Vigasin A A. On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour[J].Molecular Physics, 2010, 108(18): 2309-2313.

    [56] Epifanov S Y, Vigasin A A. Subdivision of phase space for anisotropically interacting water molecules[J].Molecular Physics, 1997, 90(1): 101-106.

    [57] Schenter G K, Kathmann S M, Garrett B C. Equilibrium constant for water dimerization: analysis of the partition function for a weakly bound system[J].The Journal of Physical Chemistry A, 2002, 10(8): 1557-1566.

    [58] Lokshtanov S E, Ivanov S V, Vigasin A A. Statistical physics partitioning and classical trajectory analysis of the phase space in CO2-Ar weakly interacting pairs[J]. Journal of Molecular Structure, 2005, 742(1): 31-36.

    [59] Kjaergaard H G, Robinson T W, Howard D L,et al. Complexes of importance to the absorption of solar radiation[J]. The Journal of Physical Chemistry A, 2003, 107(49): 10680-10686.

    [60] Baranov Y I, Lafferty W J, Ma Q,et al. Water-vapor continuum absorption in the 800-1250 cm_1 spectral region at temperatures from 311 to 363 K[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(12): 2291-2302.

    [61] Ptashnik I V, McPheat R A, Shine K P,et al. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements[J]. Journal of Geophysical Research: Atmospheres, 2011, 11(D16): D16305.

    [62] Roberts R E, Selby J E A, Biberman L M. Infrared continuum absorption by atmospheric water vapor in the 8-12μm window[J]. Applied Optics, 1976, 15(9): 2085-2090.

    [63] Burch D E. Continuum absorption by atmospheric H2O[C]. Proceedings of SPIE, Atmospheric Transmission, 1981, 277: 28-40.

    [64] Burch D E, Alt R L. Continuum Absorption by H2O in the 700-1200 cm_1 and 2400-2800 cm_1 Windows[R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1984.

    [65] Burch D E. Absorption by H2O in Narrow Windows between 3000 and 4200 cm_1[R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1985.

    [66] Van Vleck J H, Huber D L. Absorption, emission, and linebreadths: A semihistorical perspective[J].Reviews of Modern Physics, 1977, 49(4): 939.

    [67] Paynter D J, Ptashnik I V, Shine K P,et al. Laboratory measurements of the water vapor continuum in the 1200-8000 cm_1 region between 293 K and 351 K[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D21): D21301.

    [68] Cormier J G, Hodges J T, Drummond J R. Infrared water vapor continuum absorption at atmospheric temperatures[J].The Journal of Chemical Physics, 2005, 122(11): 114309.

    [69] Mlawer E J, Payne V H, Moncet J L,et al. Development and recent evaluation of the MT_CKD model of continuum absorption[J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2520-2556.

    [70] Ptashnik I V, Petrova T M, Ponomarev Y N,et al. Near-infrared water vapour self-continuum at close to room temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 120: 23-35.

    [71] Rowe P M, Walden V P. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3μm band at 30℃[J]. Applied Optics, 2009, 48(7): 1358-1365.

    [72] Green P D, Newman S M, Beeby R J,et al. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region[J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2637-2655.

    [73] Baranov Y I. The continuum absorption in H2O+N2 mixtures in the 2000-3250 cm_1 spectral region at temperatures from 326 to 363 K[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(14): 2281-2286.

    [74] Fulghum S F, Tilleman M M. Interferometric calorimeter for the measurement of water-vapor absorption[J].Journal of the Optical Society of America B, 1991, 8(12): 2401-2413.

    [75] Thapa R, Rhonehouse D, Nguyen D,et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[C]. Proceedings of SPIE, 2013, 8898: 889808.

    [76] Orphal J,et al. High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source[J]. Optics Express, 2008, 1(23): 19232-19243.

    [77] Ptashnik I V, McPheat R A, Shine K P,et al. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements[J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2557-2577.

    [78] Ptashnik I V, Petrova T M, Ponomarev Y N,et al. Water vapor continuum absorption in near-IR atmospheric windows[J]. Atmospheric and Oceanic Optics, 2015, 28: 115-120.

    [79] Morville J, Kassi S, Chenevier M,et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking[J]. Applied Physics B: Lasers and Optics, 2005, 80(8): 1027-1038.

    [80] Kerstel E R T, Iannone R Q, Chenevier M,et al. A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications[J]. Applied Physics B: Lasers and Optics, 2006, 85(2): 397-406.

    [81] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere[J].Applied Optics, 1995, 34(15): 2765-2773.

    [82] Reichert L, Hernandez M D A, Burrows J P,et al. First CRDS-measurements of water vapour continuum in the 940 nm absorption band[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 105(2): 303-311.

    [83] Mondelain D, Aradj A, Kassi S,et al. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 381-391.

    [84] Aldener M, Brown S S, Stark H,et al. Near-IR absorption of water vapor: Pressure dependence of line strengths and an upper limit for continuum absorption[J]. Journal of Molecular Spectroscopy, 2005, 232(2): 223-230.

    [85] Mondelain D, Manigand S, Kassi S,et al. Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 μm transparency window[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(9): 5625-5639.

    [86] Wu Jihua, Sun Fengyi, Pu Dasheng,et al. Laser photo-acoustic detection and its application to continuous absorption measurement of water vapour[J]. Chinese Journal of Lasers, 1982, 9(5): 101(in Chinese).

    MA Hongliang, SUN Mingguo, WU Yiheng, WANG Zhendong, CAO Zhensong. Research Progress of Water Vapour Continuum in Infrared Spectral Regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 342
    Download Citation