[1] W. S. McCulloch, W. H. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133(1943). https://doi.org/10.1007/BF02478259
[2] A. d’Avila Garcez, L. C. Lamb. Neurosymbolic AI: the 3rd wave. Artif. Intell. Rev., 56, 12387-12406(2020). https://doi.org/10.1007/s10462-023-10448-w
[3] M. Magris, A. Iosifidis. Bayesian learning for neural networks: an algorithmic survey. Artif. Intell. Rev., 56, 11773-11823(2023). https://doi.org/10.1007/s10462-023-10443-1
[4] S. S. Keerthi et al. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput., 13, 637-649(2001). https://doi.org/10.1162/089976601300014493
[5] T. Hastie et al. Multi-class AdaBoost. Stat. Interface, 2, 349-360(2009). https://doi.org/10.4310/SII.2009.v2.n3.a8
[6] J. W. Catto et al. Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Clin. Cancer Res., 9, 4172-4177(2003).
[7] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks(2012).
[8] Y. Li. Research and application of deep learning in image recognition, 994-999(2022). https://doi.org/10.1109/ICPECA53709.2022.9718847
[9] K. He et al. Deep residual learning for image recognition, 770-778(2016). https://doi.org/10.1109/CVPR.2016.90
[10] D. W. Otter, J. R. Medina, J. K. Kalita. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Networks Learn. Syst., 32, 604-624(2020). https://doi.org/10.1109/TNNLS.2020.2979670
[11] Z. Zhang et al. Deep learning for environmentally robust speech recognition: an overview of recent developments. ACM Trans. Intell. Syst. Technol., 9, 49(2018). https://doi.org/10.1145/3178115
[12] L. Floridi, M. J. M. Chiriatti. GPT-3: its nature, scope, limits, and consequences. Minds and Mach., 30, 681-694(2020).
[13] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018). https://doi.org/10.1126/science.aat8084
[14] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021). https://doi.org/10.1038/s41566-020-0685-y
[15] A. Kumar et al. Artificial intelligence techniques for the photovoltaic system: a systematic review and analysis for evaluation and benchmarking. Arch. Comput. Methods Eng., 31, 4429-4453(2024). https://doi.org/10.1007/s11831-024-10125-3
[16] A. Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115-118(2017). https://doi.org/10.1038/nature21056
[17] D. George, E. A. Huerta. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B, 778, 64-70(2018). https://doi.org/10.1016/j.physletb.2017.12.053
[18] T. Yin, X. Zhou, P. Krahenbuhl. Center-based 3D object detection and tracking, 11779-11788(2021). https://doi.org/10.1109/CVPR46437.2021.01161
[19] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci., 9351, 234-241(2015). https://doi.org/10.1007/978-3-319-24574-4_28
[20] P. Wang, B. Bayram, E. Sertel. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth Sci. Rev., 232, 104110(2022). https://doi.org/10.1016/j.earscirev.2022.104110
[21] Y. Ghasemi et al. Deep learning-based object detection in augmented reality: a systematic review. Comput. Ind., 139, 103661(2022). https://doi.org/10.1016/j.compind.2022.103661
[22] F. N. Khan et al. An optical communication’s perspective on machine learning and its applications. J. Lightwave Technol., 37, 493-516(2019). https://doi.org/10.1109/JLT.2019.2897313
[23] Z. Tian et al. Prediction of overlying rock deformation based on LSTM in optical fiber sensor monitoring, 968-974(2021). https://doi.org/10.1109/QRS-C55045.2021.00146
[24] D. Yu, X. Qiao, X. Wang. Light intensity optimization of optical fiber stress sensor based on SSA-LSTM model. Front. Energy Res., 10, 972437(2022). https://doi.org/10.3389/fenrg.2022.972437
[25] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960). https://doi.org/10.1038/187493a0
[26] K. C. Kao, G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. of Electr. Eng., 113, 189(1966). https://doi.org/10.1049/piee.1966.0189
[27] J. Sipe et al. Analysis of second-harmonic generation at metal surfaces. Phys. Rev. B, 21, 4389-4402(1980). https://doi.org/10.1103/PhysRevB.21.4389
[28] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987). https://doi.org/10.1103/PhysRevLett.58.2059
[29] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994). https://doi.org/10.1364/OL.19.000780
[30] J. Sun et al. Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 20, 264-278(2013). https://doi.org/10.1109/JSTQE.2013.2293316
[31] F. Kish et al. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100120(2017). https://doi.org/10.1109/JSTQE.2017.2717863
[32] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017). https://doi.org/10.1038/nphoton.2017.93
[33] M. S. Kim, C. C. Guest. Opto-neural system for pattern classification(1990).
[34] C. E. Floyd. An artificial neural network for SPECT image reconstruction. IEEE Trans. Med. Imaging, 10, 485-487(1991). https://doi.org/10.1109/42.97600
[35] B. Wu et al. Real-valued optical matrix computing with simplified MZI mesh. Intell. Comput., 2, 0047(2023). https://doi.org/10.34133/icomputing.0047
[36] M. J. Heck et al. Hybrid silicon photonics for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 17, 333-346(2010). https://doi.org/10.1109/JSTQE.2010.2051798
[37] C. Xiang, J. E. Bowers. Building 3D integrated circuits with electronics and photonics. Nat. Electron., 7, 422-424(2024). https://doi.org/10.1038/s41928-024-01187-z
[38] M. Milanizadeh et al. Canceling thermal cross-talk effects in photonic integrated circuits. J. Lightwave Technol., 37, 1325-1332(2019). https://doi.org/10.1109/JLT.2019.2892512
[39] J. Wu et al. Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci., 1, 2000053(2021). https://doi.org/10.1002/smsc.202000053
[40] Y. Zheng et al. Photonic neural network fabricated on thin film lithium niobate for high-fidelity and power-efficient matrix computation. Laser Photonics Rev., 18, 2400565(2024). https://doi.org/10.1002/lpor.202400565
[41] B. Shi, N. Calabretta, R. Stabile. InP photonic integrated multi-layer neural networks: architecture and performance analysis. APL Photonics, 7, 010801(2022). https://doi.org/10.1063/5.0066350
[42] Z. Cheng et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater., 30, 1802435(2018). https://doi.org/10.1002/adma.201802435
[43] J.-F. Song et al. Integrated photonics with programmable non-volatile memory. Sci. Rep., 6, 22616(2016). https://doi.org/10.1038/srep22616
[44] W. Shi et al. Lensless opto-electronic neural network with quantum dot nonlinear activation. Photonics Res., 12, 682-690(2024). https://doi.org/10.1364/PRJ.515349
[45] H. J. Caulfield, J. Kinser, S. K. Rogers. Optical neural networks. Proc. IEEE, 77, 1573-1583(1989). https://doi.org/10.1109/5.40669
[46] X. Sui et al. A review of optical neural networks. IEEE Access, 8, 70773-70783(2020). https://doi.org/10.1109/ACCESS.2020.2987333
[47] J. Liu et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX, 2, 5(2021). https://doi.org/10.1186/s43074-021-00026-0
[48] R. Xu et al. A survey of approaches for implementing optical neural networks. Opt. Laser Technol., 136, 106787(2021). https://doi.org/10.1016/j.optlastec.2020.106787
[49] T. Yan et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 123, 023901(2019). https://doi.org/10.1103/PhysRevLett.123.023901
[50] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020). https://doi.org/10.1038/s41586-020-2973-6
[51] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019). https://doi.org/10.1038/s41586-019-1157-8
[52] J. Li et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics, 1, 046001(2019). https://doi.org/10.1117/1.AP.1.4.046001
[53] D. Mengu et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 3700114(2019). https://doi.org/10.1109/JSTQE.2019.2921376
[54] F. Léonard et al. Co-design of free-space metasurface optical neuromorphic classifiers for high performance. ACS Photonics, 8, 2103-2111(021). https://doi.org/10.1021/acsphotonics.1c00526
[55] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021). https://doi.org/10.1038/s41586-020-03063-0
[56] T. Wang et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun., 13, 123(2022). https://doi.org/10.1038/s41467-021-27774-8
[57] Y. Luo et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl., 8, 112(2019). https://doi.org/10.1038/s41377-019-0223-1
[58] M. Veli et al. Terahertz pulse shaping using diffractive surfaces. Nat. Commun., 12, 37(2021). https://doi.org/10.1038/s41467-020-20268-z
[59] A. Mirhoseini et al. A graph placement methodology for fast chip design. Nature, 594, 207-212(2021). https://doi.org/10.1038/s41586-021-03544-w
[60] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015). https://doi.org/10.1038/nature14539
[61] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Nature, 323, 533-536(1986). https://doi.org/10.1038/323533a0
[62] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proc. IEEE, 78, 1550-1560(1990). https://doi.org/10.1109/5.58337
[63] D. Liu et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018). https://doi.org/10.1021/acsphotonics.7b01377
[64] M. Abadi et al. TensorFlow: a system for large-scale machine learning, 265-283(2016).
[65] W. Ma et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019). https://doi.org/10.1002/adma.201901111
[66] S. Xia et al. Deep-learning-empowered synthetic dimension dynamics: morphing of light into topological modes. Adv. Photonics, 6, 026005(2024). https://doi.org/10.1117/1.AP.6.2.026005
[67] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl. Mater. Interfaces, 11, 24264-24268(2019). https://doi.org/10.1021/acsami.9b05857
[68] C. Qian et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020). https://doi.org/10.1038/s41566-020-0604-2
[69] P. R. Wiecha et al. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237-244(2019). https://doi.org/10.1038/s41565-018-0346-1
[70] C. Zhang et al. Inverse design of soliton microcomb based on genetic algorithm and deep learning. Opt. Express, 30, 44395-44407(2022). https://doi.org/10.1364/OE.471706
[71] L. Gao et al. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 31, 1905467(2019). https://doi.org/10.1002/adma.201905467
[72] D. Melati et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019). https://doi.org/10.1038/s41467-019-12698-1
[73] M. H. Tahersima et al. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019). https://doi.org/10.1038/s41598-018-37952-2
[74] J. H. Han et al. Neural-network-enabled design of a chiral plasmonic nanodimer for target-specific chirality sensing. ACS Nano, 17, 2306-2317(2023). https://doi.org/10.1021/acsnano.2c08867
[75] E. Adibnia et al. Nanophotonic structure inverse design for switching application using deep learning. Sci. Rep., 14, 21094(2024). https://doi.org/10.1038/s41598-024-72125-4
[76] J. Jiang, M. Chen, J. A. Fan. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater., 6, 679-700(2021). https://doi.org/10.1038/s41578-020-00260-1
[77] R. Li et al. Deep reinforcement learning empowers automated inverse design and optimization of photonic crystals for nanoscale laser cavities. Nanophotonics, 12, 319-334(2023). https://doi.org/10.1515/nanoph-2022-0692
[78] Y. Liu et al. A hybrid algorithm for electromagnetic optimization utilizing neural networks, 261-263(2018). https://doi.org/10.1109/EPEPS.2018.8534264
[79] A. Vallone, N. M. Estakhri, N. M. Estakhri. Region-specified inverse design of absorption and scattering in nanoparticles by using machine learning. J. Phys.: Photonics, 5, 024002(2023). https://doi.org/10.1088/2515-7647/acc7e5
[80] S. Hemayat et al. Integrating deep convolutional surrogate solvers and particle swarm optimization for efficient inverse design of plasmonic patch nanoantennas. Nanophotonics, 13, 3963-3983(2024). https://doi.org/10.1515/nanoph-2024-0195
[81] B. Xiong et al. Deep learning design for multiwavelength infrared image sensors based on dielectric freeform metasurface. Adv. Opt. Mater., 12, 2302200(2024). https://doi.org/10.1002/adom.202302200
[82] M. Chen et al. High speed simulation and freeform optimization of nanophotonic devices with physics-augmented deep learning. ACS Photonics, 9, 3110-3123(2022). https://doi.org/10.1021/acsphotonics.2c00876
[83] Q. Zhang et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019). https://doi.org/10.1038/s41377-019-0151-0
[84] R. S. Hegde. Deep learning: a new tool for photonic nanostructure design. Nanoscale Adv., 2, 1007-1023(2020). https://doi.org/10.1039/C9NA00656G
[85] S. So et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020). https://doi.org/10.1515/nanoph-2019-0474
[86] Y. Xu et al. Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks. Photonics Res., 9, B135-B152(2021). https://doi.org/10.1364/PRJ.417693
[87] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res., 9, B182-B200(2021). https://doi.org/10.1364/PRJ.415960
[88] Z. Liu et al. Tackling photonic inverse design with machine learning. Adv. Sci., 8, 2002923(2021). https://doi.org/10.1002/advs.202002923
[89] N. Wang et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2, 22(2021). https://doi.org/10.1186/s43074-021-00044-y
[90] L. Ma et al. Intelligent algorithms: new avenues for designing nanophotonic devices. Chin. Opt. Lett., 19, 011301(2021). https://doi.org/10.3788/COL202119.011301
[91] L. Deng, Y. Xu, Y. Liu. Hybrid inverse design of photonic structures by combining optimization methods with neural networks. Photonics Nanostruct. Fundam. Appl., 52, 101073(2022). https://doi.org/10.1016/j.photonics.2022.101073
[92] Y. Xu et al. Software-defined nanophotonic devices and systems empowered by machine learning. Prog. Quantum Electron., 89, 100469(2023). https://doi.org/10.1016/j.pquantelec.2023.100469
[93] S. An et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196-3207(2019). https://doi.org/10.1021/acsphotonics.9b00966
[94] Y. Chen et al. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express, 28, 11618-11633(2020). https://doi.org/10.1364/OE.384875
[95] E. S. Harper, M. N. Weber, M. S. Mills. Machine accelerated nano-targeted inhomogeneous structures, 1-5(2019). https://doi.org/10.1109/RAPID.2019.8864295
[96] O. Hemmatyar et al. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale, 11, 21266-21274(2019). https://doi.org/10.1039/C9NR07408B
[97] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019). https://doi.org/10.1021/acs.nanolett.9b01857
[98] J. Jiang, J. A. Fan. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics, 9, 1059-1069(2020). https://doi.org/10.1515/nanoph-2019-0330
[99] J. Jiang et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano, 13, 8872-8878(2019). https://doi.org/10.1021/acsnano.9b02371
[100] Z. A. Kudyshev et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev., 7, 021407(2020). https://doi.org/10.1063/1.5134792
[101] Z. Liu et al. A hybrid strategy for the discovery and design of photonic structures. IEEE J. Emerg. Sel. Top. Circuits Syst., 10, 126-135(2020). https://doi.org/10.1109/JETCAS.2020.2970080
[102] Z. Liu et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater., 32, 1904790(2020). https://doi.org/10.1002/adma.201904790
[103] Z. Liu et al. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570-6576(2018). https://doi.org/10.1021/acs.nanolett.8b03171
[104] R. Lupoiu et al. Ultra-fast optimization of aperiodic metasurface superpixels using conditional physics-augmented deep learning(2023).
[105] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018). https://doi.org/10.1021/acsnano.8b03569
[106] W. Ma et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater., 34, 2110022(2022). https://doi.org/10.1002/adma.202110022
[107] I. Sajedian, H. Lee, J. Rho. Double-deep Q-learning to increase the efficiency of metasurface holograms. Sci. Rep., 9, 10899(2019). https://doi.org/10.1038/s41598-019-47154-z
[108] F. Wen, J. Jiang, J. A. Fan. Robust freeform metasurface design based on progressively growing generative networks. ACS Photonics, 7, 2098-2104(2020). https://doi.org/10.1021/acsphotonics.0c00539
[109] T. Badloe, I. Kim, J. Rho. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Phys. Chem. Chem. Phys., 22, 2337-2342(2020). https://doi.org/10.1039/C9CP05621A
[110] Y. Chen, L. Dal Negro. Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data. APL Photonics, 7, 010802(2022). https://doi.org/10.1063/5.0072969
[111] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Comput. Mater., 6, 12(2020). https://doi.org/10.1038/s41524-020-0276-y
[112] Y. Li et al. Self-learning perfect optical chirality via a deep neural network. Phys. Rev. Lett., 123, 213902(2019). https://doi.org/10.1103/PhysRevLett.123.213902
[113] I. Malkiel et al. Plasmonic nanostructure design and characterization via deep learning. Light: Sci. Appl., 7, 60(2018). https://doi.org/10.1038/s41377-018-0060-7
[114] J. Peurifoy et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018). https://doi.org/10.1126/sciadv.aar4206
[115] R. Riganti, L. D. Negro. Auxiliary physics-informed neural networks for forward, inverse, and coupled radiative transfer problems. Appl. Phys. Lett., 123(2023). https://doi.org/10.1063/5.0167155
[116] S. So, J. Rho. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics, 8, 1255-1261(2019). https://doi.org/10.1515/nanoph-2019-0117
[117] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329-338(2019). https://doi.org/10.1021/acs.nanolett.9b03971
[118] C. Yeung et al. Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms. ACS Photonics, 7, 2309-2318(2020). https://doi.org/10.1021/acsphotonics.0c01067
[119] M. Zandehshahvar et al. Metric learning: harnessing the power of machine learning in nanophotonics. ACS Photonics, 10, 900-909(2023). https://doi.org/10.1021/acsphotonics.2c01331
[120] M. Zandehshahvar et al. Manifold learning for knowledge discovery and intelligent inverse design of photonic nanostructures: breaking the geometric complexity. ACS Photonics, 9, 714-721(2022). https://doi.org/10.1021/acsphotonics.1c01888
[121] T. Asano, S. Noda. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express, 26, 32704-32717(2018). https://doi.org/10.1364/OE.26.032704
[122] R. Deng, W. Liu, L. Shi. Inverse design in photonic crystals. Nanophotonics, 13, 1219-1237(2024). https://doi.org/10.1515/nanoph-2023-0750
[123] Y. Long et al. Inverse design of photonic topological state via machine learning. Appl. Phys. Lett., 114, 181105(2019). https://doi.org/10.1063/1.5094838
[124] Y. Tang et al. Generative deep learning model for a multi-level nano-optic broadband power splitter(2020).
[125] X. Xu et al. Inverse design of nanophotonic devices using generative adversarial networks with the sim-NN model and self-attention mechanism. Micromachines, 14, 634(2023). https://doi.org/10.3390/mi14030634
[126] C. Yeung et al. Enhancing adjoint optimization-based photonic inverse design with explainable machine learning. ACS Photonics, 9, 1577-1585(2022). https://doi.org/10.1021/acsphotonics.1c01636
[127] I. Sajedian, T. Badloe, J. Rho. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express, 27, 5874-5883(2019). https://doi.org/10.1364/OE.27.005874
[128] D. Gostimirovic, W. N. Ye. An open-source artificial neural network model for polarization-insensitive silicon-on-insulator subwavelength grating couplers. IEEE J. Sel. Top. Quantum Electron., 25, 8200205(2018). https://doi.org/10.1109/JSTQE.2018.2885486
[129] O. Buchnev et al. Deep-learning-assisted focused ion beam nanofabrication. Nano Lett., 22, 2734-2739(2022). https://doi.org/10.1021/acs.nanolett.1c04604
[130] H. Tünnermann, A. Shirakawa. Deep reinforcement learning for coherent beam combining applications. Opt. Express, 27, 24223-24230(2019). https://doi.org/10.1364/OE.27.024223
[131] K. O’Shea. An introduction to convolutional neural networks(2015).
[132] I. Goodfellow et al. Generative adversarial networks. Commun. ACM, 63, 139-144(2020). https://doi.org/10.1145/3422622
[133] M. Mohebbi Moghaddam et al. Games of GANs: game-theoretical models for generative adversarial networks. Artif. Intell. Rev., 56, 9771-9807(2023). https://doi.org/10.1007/s10462-023-10395-6
[134] D. P. Kingma, M. Welling. An introduction to variational autoencoders. Found. Trends® Mach. Learn., 12, 307-392(2019). https://doi.org/10.1561/2200000056
[135] M. Raissi, P. Perdikaris, G. E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, 686-707(2019). https://doi.org/10.1016/j.jcp.2018.10.045
[136] D. C. Dobson, S. J. Cox. Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math., 59, 2108-2120(1999). https://doi.org/10.1137/S0036139998338455
[137] J. S. Jensen, O. Sigmund. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl. Phys. Lett., 84, 2022-2024(2004). https://doi.org/10.1063/1.1688450
[138] P. I. Borel et al. Topology optimization and fabrication of photonic crystal structures. Opt. Express, 12, 1996-2001(2004). https://doi.org/10.1364/OPEX.12.001996
[139] J. Lu, J. Vučković. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes. Opt. Express, 20, 7221-7236(2012). https://doi.org/10.1364/OE.20.007221
[140] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351-13367(2013). https://doi.org/10.1364/OE.21.013351
[141] X. Huan, Y. M. Marzouk. Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertain. Quantif., 4, 479-510(2014). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014006730
[142] K. Wang et al. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Res., 8, 528-533(2020). https://doi.org/10.1364/PRJ.383887
[143] A. Y. Piggott et al. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017). https://doi.org/10.1038/s41598-017-01939-2
[144] A. Y. Piggott et al. Inverse-designed photonics for semiconductor foundries. ACS Photonics, 7, 569-575(2020). https://doi.org/10.1021/acsphotonics.9b01540
[145] C. Shang et al. Inverse-designed lithium niobate nanophotonics. ACS Photonics, 10, 1019-1026(2023). https://doi.org/10.1021/acsphotonics.3c00040
[146] A. O. Dasdemir, V. Minden, E. S. Magden. Computational scaling in inverse photonic design through factorization caching. Appl. Phys. Lett., 123, 221106(2023). https://doi.org/10.1063/5.0172019
[147] Z. Du et al. Ultracompact and multifunctional integrated photonic platform. Sci. Adv., 10, eadm7569(2024). https://doi.org/10.1126/sciadv.adm7569
[148] A. Y. Piggott et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015). https://doi.org/10.1038/nphoton.2015.69
[149] L. Su et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photonics, 5, 301-305(2018). https://doi.org/10.1021/acsphotonics.7b00987
[150] M. F. Schubert et al. Inverse design of photonic devices with strict foundry fabrication constraints. ACS Photonics, 9, 2327-2336(2022). https://doi.org/10.1021/acsphotonics.2c00313
[151] K. Y. Yang et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photonics, 14, 369-374(2020). https://doi.org/10.1038/s41566-020-0606-0
[152] A. Michaels, E. Yablonovitch. Inverse design of near unity efficiency perfectly vertical grating couplers. Opt. Express, 26, 4766-4779(2018). https://doi.org/10.1364/OE.26.004766
[153] L. Su et al. Fully-automated optimization of grating couplers. Opt. Express, 26, 4023-4034(2018). https://doi.org/10.1364/OE.26.004023
[154] N. V. Sapra et al. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron., 25, 6100207(2019). https://doi.org/10.1109/JSTQE.2019.2891402
[155] N. V. Sapra et al. On-chip integrated laser-driven particle accelerator. Science, 367, 79-83(2020). https://doi.org/10.1126/science.aay5734
[156] C. Dory et al. Inverse-designed diamond photonics. Nat. Commun., 10, 3309(2019). https://doi.org/10.1038/s41467-019-11343-1
[157] L. Su et al. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020). https://doi.org/10.1063/1.5131263
[158] E. Bayati et al. Inverse designed metalenses with extended depth of focus. ACS Photonics, 7, 873-878(2020). https://doi.org/10.1021/acsphotonics.9b01703
[159] M. Mansouree et al. Large-scale parametrized metasurface design using adjoint optimization. ACS Photonics, 8, 455-463(2021). https://doi.org/10.1021/acsphotonics.0c01058
[160] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020). https://doi.org/10.1364/OE.385440
[161] A. F. Oskooi et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun., 181, 687-702(2010). https://doi.org/10.1016/j.cpc.2009.11.008
[162] J. Lehtinen. A framework for precomputed and captured light transport. ACM Trans. Graphics, 26, 13(2007). https://doi.org/10.1145/1289603.1289604
[163] J.-K. Byun et al. Application of the sensitivity analysis to the optimal design of the microstrip low-pass filter with defected ground structure. IEEE Trans. Magn., 45, 1462-1465(2009). https://doi.org/10.1109/TMAG.2009.2012680
[164] J. C. Finlay, T. H. Foster. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model. Appl. Opt., 44, 1917-1933(2005). https://doi.org/10.1364/AO.44.001917
[165] C. M. Lalau-Keraly et al. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013). https://doi.org/10.1364/OE.21.021693
[166] A. C. Niederberger et al. Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints. Opt. Express, 22, 12971-12981(2014). https://doi.org/10.1364/OE.22.012971
[167] G. B. Hoffman et al. Improved broadband performance of an adjoint shape optimized waveguide crossing using a Levenberg-Marquardt update. Opt. Express, 27, 24765-24780(2019). https://doi.org/10.1364/OE.27.024765
[168] M. P. Bendsøe, N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng., 71, 197-224(1988). https://doi.org/10.1016/0045-7825(88)90086-2
[169] X. Guo, W. Zhang, W. Zhong. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech., 81, 081009(2014). https://doi.org/10.1115/1.4027609
[170] P. I. Borel et al. Topology optimised broadband photonic crystal Y-splitter. Electron. Lett., 41, 69-71(2005). https://doi.org/10.1049/el:20057717
[171] J. S. Jensen et al. Topology design and fabrication of an efficient double 90/spl deg/photonic crystal waveguide bend. IEEE Photonics Technol. Lett., 17, 1202-1204(2005). https://doi.org/10.1109/LPT.2005.846502
[172] N. Ikeda et al. Topology optimised photonic crystal waveguide intersections with high-transmittance and low crosstalk. Electron. Lett., 42, 1031(2006). https://doi.org/10.1049/el:20062027
[173] J. Riishede, O. Sigmund. Inverse design of dispersion compensating optical fiber using topology optimization. J. Opt. Soc. Am. B, 25, 88-97(2007). https://doi.org/10.1364/JOSAB.25.000088
[174] L. Yang et al. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization. Appl. Phys. Lett., 95, 261101(2009). https://doi.org/10.1063/1.3278595
[175] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photonics Rev., 5, 308-321(2011). https://doi.org/10.1002/lpor.201000014
[176] R. E. Christiansen, O. Sigmund. Compact 200 line MATLAB code for inverse design in photonics by topology optimization: tutorial. J. Opt. Soc. Am. B, 38, 510-520(2021). https://doi.org/10.1364/JOSAB.405955
[177] M. P. Bendsøe. Optimal shape design as a material distribution problem. Struct. Optim., 1, 193-202(1989). https://doi.org/10.1007/BF01650949
[178] S. Osher, R. Fedkiw, K. Piechor. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev., 57, B15(2004). https://doi.org/10.1115/1.1760520
[179] X. Huang, Y. M. Xie, M. C. Burry. Manufacturing. A new algorithm for bi-directional evolutionary structural optimization. JSME Int. J. Ser. C Mech. Syst. Mach. Elements, 49, 1091-1099(2006). https://doi.org/10.1299/jsmec.49.1091
[180] Z. Lin et al. Topology optimization of freeform large-area metasurfaces. Opt. Express, 27, 15765-15775(2019). https://doi.org/10.1364/OE.27.015765
[181] Z. Lin et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl., 9, 044030(2018). https://doi.org/10.1103/PhysRevApplied.9.044030
[182] J. A. Fan. Freeform metasurface design based on topology optimization. MRS Bull., 45, 196-201(2020). https://doi.org/10.1557/mrs.2020.62
[183] R. E. Christiansen et al. Fullwave Maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses. Opt. Express, 28, 33854-33868(2020). https://doi.org/10.1364/OE.403192
[184] Z. Lin et al. Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration. Appl. Phys. Lett., 118, 041104(2021). https://doi.org/10.1063/5.0035419
[185] R. E. Christiansen et al. Inverse design of nanoparticles for enhanced Raman scattering. Opt. Express, 28, 4444-4462(2020). https://doi.org/10.1364/OE.28.004444
[186] R. E. Christiansen, F. Wang, O. Sigmund. Topological insulators by topology optimization. Phys. Rev. Lett., 122, 234502(2019). https://doi.org/10.1103/PhysRevLett.122.234502
[187] Y. Li et al. Unsupervised learning of non-Hermitian photonic bulk topology. Laser Photonics Rev., 17, 2300481(2023). https://doi.org/10.1002/lpor.202300481
[188] Y. Augenstein, C. Rockstuhl. Inverse design of nanophotonic devices with structural integrity. ACS Photonics, 7, 2190-2196(2020). https://doi.org/10.1021/acsphotonics.0c00699
[189] L. He et al. Super-compact universal quantum logic gates with inverse-designed elements. Sci. Adv., 9, eadg6685(2023). https://doi.org/10.1126/sciadv.adg6685
[190] J. Gedeon, E. Hassan, A. Calà Lesina. Time-domain topology optimization of arbitrary dispersive materials for broadband 3D nanophotonics inverse design. ACS Photonics, 10, 3875-3887(2023). https://doi.org/10.1021/acsphotonics.3c00572
[191] T. Weise. Global Optimization Algorithms-Theory and Application, 361, 153(2009).
[192] A. V. Pogrebnyakov et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material. Opt. Mater. Express, 8, 2264-2275(2018). https://doi.org/10.1364/OME.8.002264
[193] Z. Li et al. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Opt. Lett., 44, 114-117(2018). https://doi.org/10.1364/OL.44.000114
[194] Z. Li et al. Strong circular dichroism in chiral plasmonic metasurfaces optimized by micro-genetic algorithm. Opt. Express, 27, 28313-28323(2019). https://doi.org/10.1364/OE.27.028313
[195] C. Liu, S. A. Maier, G. Li. Genetic-algorithm-aided meta-atom multiplication for improved absorption and coloration in nanophotonics. ACS Photonics, 7, 1716-1722(2020). https://doi.org/10.1021/acsphotonics.0c00266
[196] Y. Fan et al. Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics, 9, 3931-3939(2020). https://doi.org/10.1515/nanoph-2020-0132
[197] C. Lu et al. Nanophotonic polarization routers based on an intelligent algorithm. Adv. Opt. Mater., 8, 1902018(2020). https://doi.org/10.1002/adom.201902018
[198] E. Lucas et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photonics, 17, 943-950(2023). https://doi.org/10.1038/s41566-023-01252-7
[199] J. C. Mak et al. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868-3871(2016). https://doi.org/10.1364/OL.41.003868
[200] L. Leng et al. Ultra-broadband, fabrication tolerant optical coupler for arbitrary splitting ratio using particle swarm optimization algorithm. IEEE Photonics J., 12, 6602212(2020). https://doi.org/10.1109/JPHOT.2020.3029059
[201] R. Yan et al. Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning. Nanotechnology, 31, 375202(2020). https://doi.org/10.1088/1361-6528/ab95b8
[202] Y. Ha et al. Minimized two-and four-step varifocal lens based on silicon photonic integrated nanoapertures. Opt. Express, 28, 7943-7952(2020). https://doi.org/10.1364/OE.386418
[203] L. Han et al. Improved particle swarm optimization algorithm for high performance SPR sensor design. Appl. Opt., 60, 1753-1760(2021). https://doi.org/10.1364/AO.417015
[204] C. Babayigit et al. Inverse designed photonic crystals for spatial filtering. Appl. Phys. Lett., 122, 244103(2023). https://doi.org/10.1063/5.0150756
[205] X. Guo et al. Design of broadband omnidirectional antireflection coatings using ant colony algorithm. Opt. Express, 22, A1137-A1144(2014). https://doi.org/10.1364/OE.22.0A1137
[206] D. Z. Zhu, P. L. Werner, D. H. Werner. Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm. IEEE Trans. Antennas Propag., 65, 7137-7149(2017). https://doi.org/10.1109/TAP.2017.2766660
[207] D. Z. Zhu et al. Fabrication and characterization of multiband polarization independent 3-D-printed frequency selective structures with ultrawide fields of view. IEEE Trans. Antennas Propag., 66, 6096-6105(2018). https://doi.org/10.1109/TAP.2018.2866507
[208] G. N. Malheiros-Silveira, F. G. Delalibera. Inverse design of photonic structures using an artificial bee colony algorithm. Appl. Opt., 59, 4171-4175(2020). https://doi.org/10.1364/AO.389475
[209] E. Garoudja et al. Artificial bee colony algorithm: a novel strategy for optical constants and thin film thickness extraction using only optical transmittance spectra for photovoltaic applications. Optik, 241, 167030(2021). https://doi.org/10.1016/j.ijleo.2021.167030
[210] M. Ali, H. Alasadi, N. Ali Noori. Optimization noise figure of fiber Raman amplifier based on bat algorithm in optical communication network. Int. J. Eng. Technol., 7, 874(2018). https://doi.org/10.14419/ijet.v7i2.11062
[211] C. Y. Liao et al. An improved bat algorithm for more efficient and faster maximum power point tracking for a photovoltaic system under partial shading conditions. IEEE Access, 8, 96378-96390(2020). https://doi.org/10.1109/ACCESS.2020.2993361
[212] Q. Zhao et al. Parameter-free optimization algorithm for iterative wavefront shaping. Opt. Lett., 46, 2880-2883(2021). https://doi.org/10.1364/OL.427215
[213] G. Sun et al. Coverage optimization of VLC in smart homes based on improved cuckoo search algorithm. Comput. Networks, 116, 63-78(2017). https://doi.org/10.1016/j.comnet.2017.02.014
[214] D. Li et al. Variable step size adaptive cuckoo search optimization algorithm for phase diversity. Appl. Opt., 57, 8212-8219(2018). https://doi.org/10.1364/AO.57.008212
[215] E. Bor, M. Turduev, H. Kurt. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light. Sci. Rep., 6, 30871(2016). https://doi.org/10.1038/srep30871
[216] Y. Xie et al. Design of an arbitrary ratio optical power splitter based on a discrete differential multiobjective evolutionary algorithm. Appl. Opt., 59, 1780-1785(2020). https://doi.org/10.1364/AO.382215
[217] L. Lei et al. A characterization method of thin film parameters based on adaptive differential evolution algorithm. IEEE Access, 9, 90231-90243(2021). https://doi.org/10.1109/ACCESS.2021.3090468
[218] P. E. Sieber, D. H. Werner. Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces. Opt. Express, 22, 32371-32383(2014). https://doi.org/10.1364/OE.22.032371
[219] G. Fujii, M. Takahashi, Y. Akimoto. CMA-ES-based structural topology optimization using a level set boundary expression—application to optical and carpet cloaks. Comput. Methods Appl. Mech. Eng., 332, 624-643(2018). https://doi.org/10.1016/j.cma.2018.01.008
[220] M. A. Barry et al. Evolutionary algorithms converge towards evolved biological photonic structures. Sci. Rep., 10, 12024(2020). https://doi.org/10.1038/s41598-020-68719-3
[221] Z. Gao, Z. Zhang, D. S. Boning. Automatic synthesis of broadband silicon photonic devices via Bayesian optimization. J. Lightwave Technol., 40, 7879-7892(2022). https://doi.org/10.1109/JLT.2022.3207052
[222] M. Li et al. Bayesian optimization of nanophotonic electromagnetic shielding with very high visible transparency. Opt. Express, 30, 33182-33194(2022). https://doi.org/10.1364/OE.468843
[223] F. Qin et al. Designing metal-dielectric nanoantenna for unidirectional scattering via Bayesian optimization. Opt. Express, 27, 31075-31086(2019). https://doi.org/10.1364/OE.27.031075
[224] D. Zhang et al. Segmented Bayesian optimization of meta-gratings for sub-wavelength light focusing. J. Opt. Soc. Am. B, 37, 181-187(2019). https://doi.org/10.1364/JOSAB.37.000181
[225] S. Forrest. Genetic algorithms: principles of natural selection applied to computation. Science, 261, 872-878(1993). https://doi.org/10.1126/science.8346439
[226] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence(1992).
[227] J. H. Holland. Genetic algorithms. Sci. Am., 267, 66-72(1992). https://doi.org/10.1038/scientificamerican0792-66
[228] J. Kennedy, R. Eberhart. Particle swarm optimization, 4, 1942-1948(1995).
[229] I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett., 85, 317-325(2003). https://doi.org/10.1016/S0020-0190(02)00447-7
[230] K. Hara, T. Iwamoto, K. Kyuma. Optimum design technique for optoelectronic devices using simulated annealing. Electron. Commun. Jpn., 79, 22-32(1996). https://doi.org/10.1002/ecjb.4420790103
[231] X. Cheng et al. Design of X-ray super-mirrors using simulated annealing algorithm. Opt. Commun., 265, 197-206(2006). https://doi.org/10.1016/j.optcom.2006.03.027
[232] Y.-J. Chang, Y.-T. Chen. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum. Opt. Express, 19, A875-A887(2011). https://doi.org/10.1364/OE.19.00A875
[233] Y. Zhao et al. Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm. Sci. Rep., 6, 23896(2016). https://doi.org/10.1038/srep23896
[234] Z. Xie et al. Broadband on-chip photonic spin Hall element via inverse design. Photonics Res., 8, 121-126(2020). https://doi.org/10.1364/PRJ.8.000121
[235] S. Kirkpatrick, C. D. Gelattm, M. P. Vecchi. Optimization by simulated annealing. Science, 220, 671-680(1983). https://doi.org/10.1126/science.220.4598.671
[236] M. Čepin. Assessment of Power System Reliability: Methods and Applications(2011).
[237] A. Basu, L. N. Frazer. Rapid determination of the critical temperature in simulated annealing inversion. Science, 249, 1409-1412(1990). https://doi.org/10.1126/science.249.4975.1409
[238] A. Khajeh et al. Tunable broadband polarization converters based on coded graphene metasurfaces. Sci. Rep., 11, 1296(2021). https://doi.org/10.1038/s41598-020-80493-w
[239] T. Lin et al. Design of mechanically-tunable photonic crystal split-beam nanocavity. Opt. Lett., 40, 3504-3507(2015). https://doi.org/10.1364/OL.40.003504
[240] I. Galaktionov et al. The use of modified hill-climbing algorithm for laser beam focusing through the turbid medium. Proc. SPIE, 10090, 100901K(2017). https://doi.org/10.1117/12.2257447
[241] St. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach(2016).
[242] E. Talbi. Metaheuristics: From Design to Implementation, 2, 268-308(2009).
[243] D. Gagnon et al. Optimization of integrated polarization filters. Opt. Lett., 39, 5768-5771(2014). https://doi.org/10.1364/OL.39.005768
[244] D. Gagnon, J. Dumont, L. J. Dubé. Multiobjective optimization in integrated photonics design. Opt. Lett., 38, 2181-2184(2013). https://doi.org/10.1364/OL.38.002181
[245] M. A. Seldowitz, J. P. Allebach, D. W. Sweeney. Synthesis of digital holograms by direct binary search. Appl. Opt., 26, 2788-2798(1987). https://doi.org/10.1364/AO.26.002788
[246] B. B. Chhetri, S. Yang, T. Shimomura. Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis. Appl. Opt., 39, 5956-5964(2000). https://doi.org/10.1364/AO.39.005956
[247] B. Shen et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015). https://doi.org/10.1038/nphoton.2015.80
[248] B. Shen, P. Wang, R. Menon. Optimization and analysis of 3D nanostructures for power-density enhancement in ultra-thin photovoltaics under oblique illumination. Opt. Express, 22, A311-A319(2014). https://doi.org/10.1364/OE.22.00A311
[249] B. Shen et al. Ultra-high-efficiency metamaterial polarizer. Optica, 1, 356-360(2014). https://doi.org/10.1364/OPTICA.1.000356
[250] P. Wang, R. Menon. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics. Opt. Express, 21, 6274-6285(2013). https://doi.org/10.1364/OE.21.006274
[251] G. Kim et al. Design and analysis of multi-wavelength diffractive optics. Opt. Express, 20, 2814-2823(2012). https://doi.org/10.1364/OE.20.002814
[252] H. Chen et al. A gradient-oriented binary search method for photonic device design. J. Lightwave Technol., 39, 2407-2412(2021). https://doi.org/10.1109/JLT.2021.3050771
[253] H. Ma et al. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun., 462, 125329(2020). https://doi.org/10.1016/j.optcom.2020.125329
[254] H. Xie et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photonics Technol. Lett., 32, 341-344(2020). https://doi.org/10.1109/LPT.2020.2975128
[255] W. Chang et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express, 26, 24135-24144(2018). https://doi.org/10.1364/OE.26.024135
[256] Y. Liu et al. Subwavelength polarization splitter–rotator with ultra-compact footprint. Opt. Lett., 44, 4495-4498(2019). https://doi.org/10.1364/OL.44.004495
[257] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019). https://doi.org/10.1038/s41566-018-0300-7
[258] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1-16(2022). https://doi.org/10.1364/OPTICA.431361
[259] K. G. Nalbant, Ş. Uyanık. Computer vision in the metaverse. J. Metaverse, 3, 9-18(2021). https://doi.org/10.57019/jmv.1148015
[260] M. Xiang et al. Computational optical imaging: challenges, opportunities, new trends, and emerging applications. Front. Imaging, 3, 1336829(2024). https://doi.org/10.3389/fimag.2024.1336829
[261] A. Pan et al. Computational imaging: the next revolution for biophotonics and biomedicine. Cells, 13, 433(2024). https://doi.org/10.3390/cells13050433
[262] B. Bhanu. Automatic target recognition: state of the art survey. IEEE Trans. Aerosp. Electron. Syst., AES-22, 364-379(1986). https://doi.org/10.1109/TAES.1986.310772
[263] B. P. Abbott et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119, 161101(2017). https://doi.org/10.1103/PhysRevLett.119.161101
[264] M. T. McCann, K. H. Jin, M. Unser. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process Mag., 34, 85-95(2017). https://doi.org/10.1109/MSP.2017.2739299
[265] S. Yoon et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020). https://doi.org/10.1038/s42254-019-0143-2
[266] J. A. Fessler. Optimization methods for magnetic resonance image reconstruction: key models and optimization algorithms. IEEE Signal Process Mag., 37, 33-40(2020). https://doi.org/10.1109/MSP.2019.2943645
[267] A. S. Panayides et al. AI in medical imaging informatics: current challenges and future directions. IEEE J. Biomed. Health. Inf., 24, 1837-1857(2020). https://doi.org/10.1109/JBHI.2020.2991043
[268] W. Liang et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell., 4, 669-677(2022). https://doi.org/10.1038/s42256-022-00516-1
[269] X.-F. Han et al. A review of algorithms for filtering the 3D point cloud. Signal Process. Image Commun., 57, 103-112(2017). https://doi.org/10.1016/j.image.2017.05.009
[270] A. Voulodimos et al. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci., 2018, 7068349(2018). https://doi.org/10.1155/2018/7068349
[271] V. Wiley, T. Lucas. Computer vision and image processing: a paper review. Int. J. Artif. Intell. Res., 2, 22-36(2018). https://doi.org/10.29099/ijair.v2i1.42
[272] A. Agrawal. Application of machine learning to computer graphics. IEEE Comput. Graphics Appl., 38, 93-96(2018). https://doi.org/10.1109/MCG.2018.042731662
[273] T. L. Nguyen et al. Quantitative phase imaging: recent advances and expanding potential in biomedicine. ACS Nano, 16, 11516-11544(2022). https://doi.org/10.1021/acsnano.1c11507
[274] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018). https://doi.org/10.1038/s41566-018-0253-x
[275] Y. Li et al. Imaging through diffusers with extended depth-of-field using a deep neural network(2020).
[276] L. Tian. Deep learning augmented microscopy: a faster, wider view, higher resolution autofluorescence-harmonic microscopy. Light Sci. Appl., 11, 109(2022). https://doi.org/10.1038/s41377-022-00801-z
[277] Q. Tian et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Opt. Express, 27, 10765-10776(2019). https://doi.org/10.1364/OE.27.010765
[278] I. Vishniakou, J. D. Seelig. Wavefront correction for adaptive optics with reflected light and deep neural networks. Opt. Express, 28, 15459-15471(2020). https://doi.org/10.1364/OE.392794
[279] J. Wang et al. Quantitative phase imaging with a compact meta-microscope. NPJ Nanophotonics, 1, 4(2024). https://doi.org/10.1038/s44310-024-00007-8
[280] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019). https://doi.org/10.1364/OPTICA.6.000618
[281] K. Wang et al. One-step robust deep learning phase unwrapping. Opt. Express, 27, 15100-15115(2019). https://doi.org/10.1364/OE.27.015100
[282] Z. Wu et al. Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry. Opt. Express, 29, 27181-27192(2021). https://doi.org/10.1364/OE.436116
[283] H. An et al. Temporal phase unwrapping based on unequal phase-shifting code. IEEE Trans. Image Process., 32, 1432-1441(2023). https://doi.org/10.1109/TIP.2023.3244650
[284] G. Spoorthi, R. K. S. S. Gorthi, S. Gorthi. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach. IEEE Trans. Image Process., 29, 4862-4872(2020). https://doi.org/10.1109/TIP.2020.2977213
[285] H. Wang et al. A novel quality-guided two-dimensional InSAR phase unwrapping method via GAUNet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 7840-7856(2021). https://doi.org/10.1109/JSTARS.2021.3099485
[286] Z. Zhao et al. Phase unwrapping method for point diffraction interferometer based on residual auto encoder neural network. Opt. Lasers Eng., 138, 106405(2021). https://doi.org/10.1016/j.optlaseng.2020.106405
[287] J. C. Zhang et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. Opt. Express, 27, 14903-14912(2019). https://doi.org/10.1364/OE.27.014903
[288] S. Park, Y. Kim, I. Moon. Automated phase unwrapping in digital holography with deep learning. Biomed. Opt. Express, 12, 7064-7081(2021). https://doi.org/10.1364/BOE.440338
[289] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018). https://doi.org/10.1038/lsa.2017.141
[290] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express, 26, 26470-26484(2018). https://doi.org/10.1364/OE.26.026470
[291] L. F. Zheng et al. Lung cancer diagnosis with quantitative DIC microscopy and a deep convolutional neural network. Biomed. Opt. Express, 10, 2446-2456(2019). https://doi.org/10.1364/BOE.10.002446
[292] T. Zhang et al. Rapid and robust two-dimensional phase unwrapping via deep learning. Opt. Express, 27, 23173-23185(2019). https://doi.org/10.1364/OE.27.023173
[293] W. Lu et al. High quality of an absolute phase reconstruction for coherent digital holography with an enhanced anti-speckle deep neural unwrapping network. Opt. Express, 30, 37457-37469(2022). https://doi.org/10.1364/OE.470534
[294] G.-Z. Yang. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt., 33, 209-218(1994). https://doi.org/10.1364/AO.33.000209
[295] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982). https://doi.org/10.1364/AO.21.002758
[296] J. R. Fienup. Phase-retrieval algorithms for a complicated optical system. Appl. Opt., 32, 1737-1746(1993). https://doi.org/10.1364/AO.32.001737
[297] T. Brown, M. M. Wang. An iterative algorithm for single-frequency estimation. IEEE Trans. Signal Process., 50, 2671-2682(2002). https://doi.org/10.1109/TSP.2002.804096
[298] A. Kreimer, D. Raphaeli. Efficient low-complexity phase noise resistant iterative joint phase estimation and decoding algorithm. IEEE Trans. Commun., 66, 4199-4210(2018). https://doi.org/10.1109/TCOMM.2018.2829865
[299] J. Li. Iterative method to improve the precision of the quantum-phase-estimation algorithm. Phys. Rev. A, 109, 032606(2024). https://doi.org/10.1103/PhysRevA.109.032606
[300] Y. Chen, Q. Kemao. Advanced iterative algorithm for phase extraction: performance evaluation and enhancement. Opt. Express, 27, 37634-37651(2019). https://doi.org/10.1364/OE.27.037634
[301] Y. Y. D. Wang et al. High-generalization deep sparse pattern reconstruction: feature extraction of speckles using self-attention armed convolutional neural networks. Opt. Express, 29, 35702-35711(2021). https://doi.org/10.1364/OE.440405
[302] T. Shimobaba et al. Dynamic-range compression scheme for digital hologram using a deep neural network. Opt. Lett., 44, 3038-3041(2019). https://doi.org/10.1364/OL.44.003038
[303] Y. Y. Ma, X. H. Feng, L. Gao. Deep-learning-based image reconstruction for compressed ultrafast photography. Opt. Lett., 45, 4400-4403(2020). https://doi.org/10.1364/OL.397717
[304] X. B. Li et al. Learning-based denoising for polarimetric images. Opt. Express, 28, 16309-16321(2020). https://doi.org/10.1364/OE.391017
[305] J. Meng et al. Learning based polarization image fusion under an alternative paradigm. Opt. Laser Technol., 168, 109969(2024). https://doi.org/10.1016/j.optlastec.2023.109969
[306] Y. Lyu et al. Reflection separation using a pair of unpolarized and polarized images(2019).
[307] C. Zhou et al. Learning to dehaze with polarization(2021).
[308] M. Shao et al. Transparent shape from a single view polarization image, 9243-9252(2023).
[309] H. Hu et al. Polarimetric image denoising on small datasets using deep transfer learning. Opt. Laser Technol., 166, 109632(2023). https://doi.org/10.1016/j.optlastec.2023.109632
[310] Z. Li et al. Polarized color image denoising, 9873-9882(2023).
[311] A. Dosovitskiy et al. An image is worth 16 × 16 words: transformers for image recognition at scale(2020).
[312] Y. Y. Sun, J. C. Zhang, R. G. Liang. Color polarization demosaicking by a convolutional neural network. Opt. Lett., 46, 4338-4341(2021). https://doi.org/10.1364/OL.431919
[313] X. B. Liu, X. B. Li, S. C. Chen. Enhanced polarization demosaicking network via a precise angle of polarization loss calculation method. Opt. Lett., 47, 1065-1068(2022). https://doi.org/10.1364/OL.451335
[314] J. Ting et al. Deep snapshot HDR reconstruction based on the polarization camera, 1769-1773(2021).
[315] R. Li et al. Reflection separation via multi-bounce polarization state tracing. Lect. Notes Comput. Sci., 12358, 781-796(2020). https://doi.org/10.1007/978-3-030-58601-0_46
[316] C. Lei et al. Polarized reflection removal with perfect alignment in the wild, 1747-1755(2020).
[317] Z. Zhu et al. PODB: a learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions. Inf. Fusion, 108, 102385(2024). https://doi.org/10.1016/j.inffus.2024.102385
[318] Y. Dong et al. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging, 40, 3728-3738(2021). https://doi.org/10.1109/TMI.2021.3097200
[319] H. Mei et al. Don’t hit me! Glass detection in real-world scenes, 3684-3693(2020). https://doi.org/10.1109/CVPR42600.2020.00374
[320] H. He et al. Enhanced boundary learning for glass-like object segmentation, 15839-15848(2021). https://doi.org/10.1109/ICCV48922.2021.01556
[321] Y. Qiao et al. Multi-view spectral polarization propagation for video glass segmentation, 23161-23171(2023).
[322] H. Mei et al. Glass segmentation using intensity and spectral polarization cues, 12612-12621(2022). https://doi.org/10.1109/CVPR52688.2022.01229
[323] A. Kalra et al. Deep polarization cues for transparent object segmentation, 8599-8608(2020). https://doi.org/10.1109/CVPR42600.2020.00863
[324] Y. Liang et al. Multimodal material segmentation, 19768-19776(2022).
[325] P. Qi et al. U2R-pGAN: unpaired underwater-image recovery with polarimetric generative adversarial network. Opt. Lasers Eng., 157, 107112(2022). https://doi.org/10.1016/j.optlaseng.2022.107112
[326] Y. Ba et al. Deep shape from polarization. Lect. Notes Comput. Sci., 12369, 554-571(2020). https://doi.org/10.1007/978-3-030-58586-0_33
[327] S. Zou et al. 3D human shape reconstruction from a polarization image. Lect. Notes Comput. Sci., 12359, 351-368(2020). https://doi.org/10.1007/978-3-030-58568-6_21
[328] C. Lei et al. Shape from polarization for complex scenes in the wild, 12622-12631(2022). https://doi.org/10.1109/CVPR52688.2022.01230
[329] D. S. Jeon et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graphic, 38, 117(2019). https://doi.org/10.1145/3306346.3322946
[330] H. Hu et al. Practical snapshot hyperspectral imaging with DOE. Opt. Lasers Eng., 156, 107098(2022). https://doi.org/10.1016/j.optlaseng.2022.107098
[331] W. Zhang et al. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl., 10, 108(2021). https://doi.org/10.1038/s41377-021-00545-2
[332] Q. Cui et al. Snapshot hyperspectral light field tomography. Optica, 8, 1552-1558(2021). https://doi.org/10.1364/OPTICA.440074
[333] H. Arguello et al. Shift-variant color-coded diffractive spectral imaging system. Optica, 8, 1424-1434(2021). https://doi.org/10.1364/OPTICA.439142
[334] K. Monakhova et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020). https://doi.org/10.1364/OPTICA.397214
[335] M. Yako et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nat. Photonics, 17, 218-223(2023). https://doi.org/10.1038/s41566-022-01141-5
[336] J. Yang et al. Ultraspectral imaging based on metasurfaces with freeform shaped meta-atoms. Laser Photonics Rev., 16, 2100663(2022). https://doi.org/10.1002/lpor.202100663
[337] W. Zhang et al. Handheld snapshot multi-spectral camera at 65-megapixel resolution. Nat. Commun., 14, 5043(2023). https://doi.org/10.1038/s41467-023-40739-3
[338] X. Cao et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Process Mag., 33, 95-108(2016). https://doi.org/10.1109/MSP.2016.2582378
[339] Z. Meng, X. Yuan. Perception inspired deep neural networks for spectral snapshot compressive imaging, 2813-2817(2021). https://doi.org/10.1109/ICIP42928.2021.9506316
[340] F. Bao et al. Heat-assisted detection and ranging. Nature, 619, 743-748(2023). https://doi.org/10.1038/s41586-023-06174-6
[341] J. Yoon. Hyperspectral imaging for clinical applications. Biochip J., 16, 1-12(2022). https://doi.org/10.1007/s13206-021-00041-0
[342] X. Li et al. Challenges and opportunities in bioimage analysis. Nat. Methods, 20, 958-961(2023). https://doi.org/10.1038/s41592-023-01900-4
[343] C. McNeil et al. An end-to-end platform for digital pathology using hyperspectral autofluorescence microscopy and deep learning-based virtual histology. Mod. Pathol., 37, 100377(2024). https://doi.org/10.1016/j.modpat.2023.100377
[344] S. Berry et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science, 372, eaba2609(2021). https://doi.org/10.1126/science.aba2609
[345] A. G. Brolo. Plasmonics for future biosensors. Nat. Photonics, 6, 709-713(2012). https://doi.org/10.1038/nphoton.2012.266
[346] H. Kaushal, G. Kaddoum. Applications of lasers for tactical military operations. IEEE Access, 5, 20736-20753(2017). https://doi.org/10.1109/ACCESS.2017.2755678
[347] G. Van Houdt, C. Mosquera, G. Nápoles. A review on the long short-term memory model. Artif. Intell. Rev., 53, 5929-5955(2020). https://doi.org/10.1007/s10462-020-09838-1
[348] E. Ip, J. M. Kahn. Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol., 26, 3416-3425(2008). https://doi.org/10.1109/JLT.2008.927791
[349] I. D. Phillips et al. Exceeding the nonlinear-Shannon limit using Raman laser based amplification and optical phase conjugation(2014).
[350] S. Zhang et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat. Commun., 10, 3033(2019). https://doi.org/10.1038/s41467-019-10911-9
[351] Q. Zhou, F. Zhang, C. Yang. AdaNN: adaptive neural network-based equalizer via online semi-supervised learning. J. Lightwave Technol., 38, 4315-4324(2020). https://doi.org/10.1109/JLT.2020.2991028
[352] S. Deligiannidis et al. Compensation of fiber nonlinearities in digital coherent systems leveraging long short-term memory neural networks. J. Lightwave Technol., 38, 5991-5999(2020). https://doi.org/10.1109/JLT.2020.3007919
[353] X. Dai et al. LSTM networks enabled nonlinear equalization in 50-Gb/s PAM-4 transmission links. Appl. Opt., 58, 6079-6084(2019). https://doi.org/10.1364/AO.58.006079
[354] B. Karanov et al. Deep learning for communication over dispersive nonlinear channels: performance and comparison with classical digital signal processing, 192-199(2019).
[355] S. Deligiannidis, C. Mesaritakis, A. Bogris. Performance and complexity analysis of bi-directional recurrent neural network models versus Volterra nonlinear equalizers in digital coherent systems. J. Lightwave Technol., 39, 5791-5798(2021). https://doi.org/10.1109/JLT.2021.3092415
[356] P. J. Freire et al. Performance versus complexity study of neural network equalizers in coherent optical systems. J. Lightwave Technol., 39, 6085-6096(2021). https://doi.org/10.1109/JLT.2021.3096286
[357] X. Luo et al. Nonlinear impairment compensation using transfer learning-assisted convolutional bidirectional long short-term memory neural network for coherent optical communication systems. Photonics, 9, 919(2022). https://doi.org/10.3390/photonics9120919
[358] H. Ming et al. Ultralow complexity long short-term memory network for fiber nonlinearity mitigation in coherent optical communication systems. J. Lightwave Technol., 40, 2427-2434(2022). https://doi.org/10.1109/JLT.2022.3141404
[359] M. Cao et al. LSTM attention neural-network-based signal detection for hybrid modulated faster-Than-Nyquist optical wireless communications. Sensors, 22, 8992(2022). https://doi.org/10.3390/s22228992
[360] F. N. Khan et al. Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling. Opt. Express, 23, 30337-30346(2015). https://doi.org/10.1364/OE.23.030337
[361] L. Dou et al. Differential pilots aided in-band OSNR monitor with large nonlinear tolerance(2015).
[362] W. Wang et al. Joint OSNR and interchannel nonlinearity estimation method based on fractional Fourier transform. J. Lightwave Technol., 35, 4497-4506(2017). https://doi.org/10.1109/JLT.2017.2744666
[363] X. Wu et al. Applications of artificial neural networks in optical performance monitoring. J. Lightwave Technol., 27, 3580-3589(2009). https://doi.org/10.1109/JLT.2009.2024435
[364] F. N. Khan et al. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Opt. Express, 20, 12422-12431(2012). https://doi.org/10.1364/OE.20.012422
[365] E. Ganesan et al. LSTM-based DWBA prediction for tactile applications in optical access network. Photonics, 10, 37(2022). https://doi.org/10.3390/photonics10010037
[366] C. Wang et al. Long short-term memory neural network (LSTM-NN) enabled accurate optical signal-to-noise ratio (OSNR) monitoring. J. Lightwave Technol., 37, 4140-4146(2019). https://doi.org/10.1109/JLT.2019.2904263
[367] P. Ling, M. Li, W. Guan. Channel-attention-enhanced LSTM neural network decoder and equalizer for RSE-based optical camera communications. Electronics, 11, 1272(2022). https://doi.org/10.3390/electronics11081272
[368] X. Pu et al. Sentiment analysis of online course evaluation based on a new ensemble deep learning mode: evidence from Chinese. Appl. Sci., 11, 11313(2021). https://doi.org/10.3390/app112311313
[369] Y. Zhou et al. An artificial intelligence model based on multi-step feature engineering and deep attention network for optical network performance monitoring. Optik, 273, 170443(2023). https://doi.org/10.1016/j.ijleo.2022.170443
[370] C. Zhang et al. Potential failure cause identification for optical networks using deep learning with an attention mechanism. J. Opt. Commun. Networking, 14, A122-A133(2022). https://doi.org/10.1364/JOCN.438900
[371] C. He et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl., 10, 194(2021). https://doi.org/10.1038/s41377-021-00639-x
[372] Y. Ni et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022). https://doi.org/10.1186/s43593-022-00032-0
[373] Z. Lin et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits. Photonics Res., 8, 864-874(2020). https://doi.org/10.1364/PRJ.385008
[374] S. Yuan et al. Geometric deep optical sensing. Science, 379, eade1220(2023). https://doi.org/10.1126/science.ade1220
[375] C. Ma et al. Intelligent infrared sensing enabled by tunable Moiré quantum geometry. Nature, 604, 266-272(2022). https://doi.org/10.1038/s41586-022-04548-w
[376] M. Wang et al. φ-OTDR pattern recognition based on CNN-LSTM. Optik, 272, 170380(2023). https://doi.org/10.1016/j.ijleo.2022.170380
[377] Q. Wang et al. Assessment of heart rate and respiratory rate for perioperative infants based on ELC model. IEEE Sens. J., 21, 13685-13694(2021). https://doi.org/10.1109/JSEN.2021.3071882
[378] M. Sabih, D. K. Vishwakarma. Crowd anomaly detection with LSTMs using optical features and domain knowledge for improved inferring. Vis. Comput., 38, 1719-1730(2021). https://doi.org/10.1007/s00371-021-02100-x
[379] J. Siłka, M. Wieczorek, M. Woźniak. Recurrent neural network model for high-speed train vibration prediction from time series. Neural Comput. Appl., 34, 13305-13318(2022). https://doi.org/10.1007/s00521-022-06949-4
[380] B. Lee, S. Roh, J. Park. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol., 15, 209-221(2009). https://doi.org/10.1016/j.yofte.2009.02.006
[381] Y. Fan et al. Dispersion-assisted high-dimensional photodetector. Nature, 630, 77-83(2024). https://doi.org/10.1038/s41586-024-07398-w
[382] T. Wang et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics, 17, 408-415(2023). https://doi.org/10.1038/s41566-023-01170-8
[383] C. Huang et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron., 4, 837-844(2021). https://doi.org/10.1038/s41928-021-00661-2
[384] F. Sunny, M. Nikdast, S. Pasricha. RecLight: a recurrent neural network accelerator with integrated silicon photonics, 98-103(2022). https://doi.org/10.1109/ISVLSI54635.2022.00030
[385] K. Sozos et al. High-speed photonic neuromorphic computing using recurrent optical spectrum slicing neural networks. Commun. Eng., 1, 24(2022). https://doi.org/10.1038/s44172-022-00024-5
[386] H. Zhu et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun., 13, 1044(2022). https://doi.org/10.1038/s41467-022-28702-0
[387] D. C. Tzarouchis et al. Mathematical operations and equation solving with reconfigurable metadevices. Light Sci. Appl., 11, 263(2022). https://doi.org/10.1038/s41377-022-00950-1
[388] M. Reck et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994). https://doi.org/10.1103/PhysRevLett.73.58
[389] W. R. Clements et al. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016). https://doi.org/10.1364/OPTICA.3.001460
[390] F. Shokraneh, S. Geoffroy-Gagnon, O. Liboiron-Ladouceur. Towards phase-error-and loss-tolerant programmable MZI-based optical processors for optical neural networks, 1-2(2020). https://doi.org/10.1109/IPC47351.2020.9252466
[391] Y. Tian et al. Scalable and compact photonic neural chip with low learning-capability-loss. Nanophotonics, 11, 329-344(2022). https://doi.org/10.1515/nanoph-2021-0521
[392] M. Prabhu et al. A recurrent Ising machine in a photonic integrated circuit(2019).
[393] D. A. Miller. Self-aligning universal beam coupler. Opt. Express, 21, 6360-6370(2013). https://doi.org/10.1364/OE.21.006360
[394] D. A. Miller. Self-configuring universal linear optical component. Photonics Res., 1, 1-15(2013). https://doi.org/10.1364/PRJ.1.000001
[395] R. Hamerly, S. Bandyopadhyay, D. Englund. Stability of self-configuring large multiport interferometers. Phys. Rev. Appl., 18, 024018(2022). https://doi.org/10.1103/PhysRevApplied.18.024018
[396] D. A. Miller. Setting up meshes of interferometers–reversed local light interference method. Opt. Express, 25, 29233-29248(2017). https://doi.org/10.1364/OE.25.029233
[397] S. Pai et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron., 26, 6100813(2020). https://doi.org/10.1109/JSTQE.2020.2997849
[398] R. Shao, G. Zhang, X. Gong. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Res., 10, 1868-1876(2022). https://doi.org/10.1364/PRJ.449570
[399] H. Zhang et al. Efficient on-chip training of optical neural networks using genetic algorithm. ACS Photonics, 8, 1662-1672(2021). https://doi.org/10.1021/acsphotonics.1c00035
[400] G. Cong et al. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nat. Commun., 13, 3261(2022). https://doi.org/10.1038/s41467-022-30906-3
[401] B. Wu et al. Chip-to-chip optical multimode communication with universal mode processors. PhotoniX, 4, 37(2023). https://doi.org/10.1186/s43074-023-00114-3
[402] S. Bandyopadhyay et al. Single chip photonic deep neural network with accelerated training(2022).
[403] Z. Zheng et al. Dual adaptive training of photonic neural networks. Nat. Mach. Intell., 5, 1119-1129(2023). https://doi.org/10.1038/s42256-023-00723-4
[404] T. W. Hughes et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018). https://doi.org/10.1364/OPTICA.5.000864
[405] S. Pai et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science, 380, 398-404(2023). https://doi.org/10.1126/science.ade8450
[406] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021). https://doi.org/10.1038/s41586-020-03070-1
[407] B. Dong et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photonics, 17, 1080-1088(2023). https://doi.org/10.1038/s41566-023-01313-x
[408] L. Yang, L. Zhang, R. Ji. On-chip optical matrix-vector multiplier. Proc. SPIE, 8855, 88550F(2013). https://doi.org/10.1117/12.2028585
[409] J. Cheng, H. Zhou, J. Dong. Photonic matrix computing: from fundamentals to applications. Nanomaterials, 11, 1683(2021). https://doi.org/10.3390/nano11071683
[410] Y. Huang et al. Easily scalable photonic tensor core based on tunable units with single internal phase shifters. Laser Photonics Rev., 17, 2300001(2023). https://doi.org/10.1002/lpor.202300001
[411] A. N. Tait et al. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol., 32, 4029-4041(2014). https://doi.org/10.1109/JLT.2014.2345652
[412] A. N. Tait et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron., 22, 312-325(2016). https://doi.org/10.1109/JSTQE.2016.2573583
[413] A. N. Tait et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017). https://doi.org/10.1038/s41598-017-07754-z
[414] C. Ramey. Silicon photonics for artificial intelligence acceleration: HotChips 32(2020). https://doi.org/10.1109/HCS49909.2020.9220525
[415] M. Y.-S. Fang et al. Design of optical neural networks with component imprecisions. Opt. Express, 27, 14009-14029(2019). https://doi.org/10.1364/OE.27.014009
[416] R. Barak, Y. Ben-Aryeh. Quantum fast Fourier transform and quantum computation by linear optics. J. Opt. Soc. Am. B, 24, 231-240(2007). https://doi.org/10.1364/JOSAB.24.000231
[417] S. Pai et al. Matrix optimization on universal unitary photonic devices. Phys. Rev. Appl., 11, 064044(2019). https://doi.org/10.1103/PhysRevApplied.11.064044
[418] Y. Liu et al. Reduce footprints of multiport interferometers by cosine-sine-decomposition unfolding(2022).
[419] L. Torrijos-Morán, D. Pérez-Galacho, D. Pérez-López. Silicon programmable photonic circuits based on periodic bimodal waveguides. Laser Photonics Rev., 18, 2300505(2024). https://doi.org/10.1002/lpor.202300505
[420] X. Wang et al. Chip-based high-dimensional optical neural network. Nano-Micro Lett., 14, 221(2022). https://doi.org/10.1007/s40820-022-00957-8
[421] R. Yin et al. Integrated WDM-compatible optical mode division multiplexing neural network accelerator. Optica, 10, 1709-1718(2023). https://doi.org/10.1364/OPTICA.500523
[422] R. Burgwal et al. Using an imperfect photonic network to implement random unitaries. Opt. Express, 25, 28236-28245(2017). https://doi.org/10.1364/OE.25.028236
[423] B. A. Bell, I. A. Walmsley. Further compactifying linear optical unitaries. APL Photonics, 6, 070804(2021). https://doi.org/10.1063/5.0053421
[424] J. A. Neff, R. A. Athale, S. H. Lee. Two-dimensional spatial light modulators: a tutorial. Proc. IEEE, 78, 826-855(1990). https://doi.org/10.1109/5.53402
[425] K. Von Bieren. Lens design for optical Fourier transform systems. Appl. Opt., 10, 2739-2742(1971). https://doi.org/10.1364/AO.10.002739
[426] J. W. Goodman, A. Dias, L. Woody. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett., 2, 1-3(1978). https://doi.org/10.1364/OL.2.000001
[427] R. A. Athale, W. C. Collins. Optical matrix–matrix multiplier based on outer product decomposition. Appl. Opt., 21, 2089-2090(1982). https://doi.org/10.1364/AO.21.002089
[428] B. Wu et al. Programmable integrated photonic coherent matrix: principle, configuring, and applications. Appl. Phys. Rev., 11, 011309(2024). https://doi.org/10.1063/5.0184982
[429] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022). https://doi.org/10.1038/s41928-022-00719-9
[430] M. Miscuglio et al. Massively parallel amplitude-only Fourier neural network. Optica, 7, 1812-1819(2020). https://doi.org/10.1364/OPTICA.408659
[431] S. Colburn et al. Optical frontend for a convolutional neural network. Appl. Opt., 58, 3179-3186(2019). https://doi.org/10.1364/AO.58.003179
[432] P. Pad et al. Efficient neural vision systems based on convolutional image acquisition, 12282-12291(2020). https://doi.org/10.1109/CVPR42600.2020.01230
[433] J. Chang et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018). https://doi.org/10.1038/s41598-018-30619-y
[434] J. W. Goodman, M. E. Cox. Introduction to Fourier optics. Phys. Today, 22, 97-101(1969). https://doi.org/10.1063/1.3035549
[435] L. L. Doskolovich et al. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett., 39, 1278-1281(2014). https://doi.org/10.1364/OL.39.001278
[436] Z. Ruan. Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 40, 601-604(2015). https://doi.org/10.1364/OL.40.000601
[437] T. Zhu et al. Plasmonic computing of spatial differentiation. Nat. Commun., 8, 15391(2017). https://doi.org/10.1038/ncomms15391
[438] Z. Dong et al. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl. Phys. Lett., 112, 181102(2018). https://doi.org/10.1063/1.5026309
[439] Y. Fang, Z. Ruan. Optical spatial differentiator for a synthetic three-dimensional optical field. Opt. Lett., 43, 5893-5896(2018). https://doi.org/10.1364/OL.43.005893
[440] Y. Fang, Y. Lou, Z. Ruan. On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region. Opt. Lett., 42, 3840-3843(2017). https://doi.org/10.1364/OL.42.003840
[441] F. Zangeneh-Nejad, A. Khavasi. Spatial integration by a dielectric slab and its planar graphene-based counterpart. Opt. Lett., 42, 1954-1957(2017). https://doi.org/10.1364/OL.42.001954
[442] N. V. Golovastikov et al. Spatial optical integrator based on phase-shifted Bragg gratings. Opt. Commun., 338, 457-460(2015). https://doi.org/10.1016/j.optcom.2014.11.007
[443] W. Shi et al. LOEN: lensless opto-electronic neural network empowered machine vision. Light Sci. Appl., 11, 121(2022). https://doi.org/10.1038/s41377-022-00809-5
[444] W. Shi et al. Lensless opto-electronic neural network architecture for processing multi-color-channel signals, 1-4(2023). https://doi.org/10.1109/OECC56963.2023.10209732
[445] H. Zheng et al. Meta-optic accelerators for object classifiers. Sci. Adv., 8, eabo6410(2022). https://doi.org/10.1126/sciadv.abo6410
[446] J. Spall et al. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett., 45, 5752-5755(2020). https://doi.org/10.1364/OL.401675
[447] L. Bernstein et al. Single-shot optical neural network. Sci. Adv., 9, eadg7904(2023). https://doi.org/10.1126/sciadv.adg7904
[448] Z. Chen et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics, 17, 723-730(2023). https://doi.org/10.1038/s41566-023-01233-w
[449] R. Hamerly et al. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019). https://doi.org/10.1103/PhysRevX.9.021032
[450] G. Pan et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems. Light Sci. Appl., 13, 229(2024). https://doi.org/10.1038/s41377-024-01561-8
[451] M. Yildirim et al. Nonlinear processing with linear optics. Nat. Photonics, 18, 1076-1082(2024). https://doi.org/10.1038/s41566-024-01494-z
[452] T. Zhou et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res., 8, 940-953(2020). https://doi.org/10.1364/PRJ.389553
[453] L. G. Wright et al. Deep physical neural networks trained with backpropagation. Nature, 601, 549-555(2022). https://doi.org/10.1038/s41586-021-04223-6
[454] J. Spall, X. Guo, A. I. Lvovsky. Hybrid training of optical neural networks. Optica, 9, 803-811(2022). https://doi.org/10.1364/OPTICA.456108
[455] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021). https://doi.org/10.1038/s41566-021-00796-w
[456] O. Kulce et al. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl., 10, 25(2021). https://doi.org/10.1038/s41377-020-00439-9
[457] H. Chen et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7, 1483-1491(2021). https://doi.org/10.1016/j.eng.2020.07.032
[458] M. S. S. Rahman et al. Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl., 12, 195(2023). https://doi.org/10.1038/s41377-023-01234-y
[459] J. Li et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv., 7, eabd7690(2021). https://doi.org/10.1126/sciadv.abd7690
[460] M. S. S. Rahman et al. Ensemble learning of diffractive optical networks. Light Sci. Appl., 10, 14(2021). https://doi.org/10.1038/s41377-020-00446-w
[461] X. Yang et al. Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks. Adv. Photonics Nexus, 3, 016010(2024). https://doi.org/10.1117/1.APN.3.1.016010
[462] L. Lu et al. Miniaturized diffraction grating design and processing for deep neural network. IEEE Photonics Technol. Lett., 31, 1952-1955(2019). https://doi.org/10.1109/LPT.2019.2948626
[463] E. Goi et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light Sci. Appl., 10, 40(2021). https://doi.org/10.1038/s41377-021-00483-z
[464] X. Luo et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl., 11, 158(2022). https://doi.org/10.1038/s41377-022-00844-2
[465] Z. Wang et al. On-chip wavefront shaping with dielectric metasurface. Nat. Commun., 10, 3547(2019). https://doi.org/10.1038/s41467-019-11578-y
[466] T. Fu et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun., 14, 70(2023). https://doi.org/10.1038/s41467-022-35772-7
[467] Y. Qu et al. Inverse design of an integrated-nanophotonics optical neural network. Sci. Bull., 65, 1177-1183(2020). https://doi.org/10.1016/j.scib.2020.03.042
[468] V. Nikkhah et al. Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix multiplication. Nat. Photonics, 18, 501-508(2024). https://doi.org/10.1038/s41566-024-01394-2
[469] W. Liu et al. C-DONN: compact diffractive optical neural network with deep learning regression. Opt. Express, 31, 22127-22143(2023). https://doi.org/10.1364/OE.490072
[470] T. Fu et al. Integrated diffractive optical neural network with space-time interleaving. Chin. Opt. Lett., 21, 091301(2023).
[471] R. Sun et al. Multimode diffractive optical neural network. Adv. Photonics Nexus, 3, 026007(2024). https://doi.org/10.1117/1.APN.3.2.026007
[472] E. Khoram et al. Nanophotonic media for artificial neural inference. Photonics Res., 7, 823-827(2019). https://doi.org/10.1364/PRJ.7.000823
[473] N. Mohammadi Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333-1338(2019). https://doi.org/10.1126/science.aaw2498
[474] T. Wu et al. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics, 17, 710-716(2023). https://doi.org/10.1038/s41566-023-01205-0
[475] J. Li et al. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl., 11, 153(2022). https://doi.org/10.1038/s41377-022-00849-x
[476] Z. Duan, H. Chen, X. Lin. Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics, 12, 893-903(2023). https://doi.org/10.1515/nanoph-2022-0615
[477] Z. Huang et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys. Rev. Appl., 15, 014037(2021). https://doi.org/10.1103/PhysRevApplied.15.014037
[478] Y. Luo et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight, 2, 4(2022). https://doi.org/10.1186/s43593-022-00012-4
[479] J. Hu et al. Subwavelength imaging using a solid-immersion diffractive optical processor. eLight, 4, 8(2024). https://doi.org/10.1186/s43593-024-00067-5
[480] Ç. Işıl et al. Super-resolution image display using diffractive decoders. Sci. Adv., 8, eadd3433(2022). https://doi.org/10.1126/sciadv.add3433
[481] B. Bai et al. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl., 12, 69(2023). https://doi.org/10.1038/s41377-023-01116-3
[482] Y. Chen et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv., 9, 8437(2023). https://doi.org/10.1126/sciadv.adf8437
[483] K. Kim et al. Multi-element microscope optimization by a learned sensing network with composite physical layers. Opt. Lett., 45, 5684-5687(2020). https://doi.org/10.1364/OL.401105
[484] A. Liutkus et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep., 4, 5552(2014). https://doi.org/10.1038/srep05552
[485] V. Sitzmann et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graphics, 37, 114(2018). https://doi.org/10.1145/3197517.3201333
[486] E. Markley et al. Physics-based learned diffuser for single-shot 3D imaging(2021).
[487] H. Haim et al. Depth estimation from a single image using deep learned phase coded mask. IEEE Trans. Comput. Imaging, 4, 298-310(2018). https://doi.org/10.1109/TCI.2018.2849326
[488] A. Levin et al. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graphics, 26, 70(2007). https://doi.org/10.1145/1276377.1276464
[489] Y. Chen et al. All-analog photoelectronic chip for high-speed vision tasks. Nature, 623, 48-57(2023). https://doi.org/10.1038/s41586-023-06558-8
[490] Z. Xu et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science, 384, 202-209(2024). https://doi.org/10.1126/science.adl1203
[491] Y. Zuo et al. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019). https://doi.org/10.1364/OPTICA.6.001132
[492] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021). https://doi.org/10.1038/s41566-020-00754-y
[493] A. N. Tait et al. Silicon photonic modulator neuron. Phys. Rev. Appl., 11, 064043(2019). https://doi.org/10.1103/PhysRevApplied.11.064043
[494] X.-Y. Xu et al. A scalable photonic computer solving the subset sum problem. Sci. Adv., 6, eaay5853(2020). https://doi.org/10.1126/sciadv.aay5853
[495] Y. Xie et al. Thermally-reconfigurable silicon photonic devices and circuits. IEEE J. Sel. Top. Quantum Electron., 26, 3600220(2020). https://doi.org/10.1109/JSTQE.2020.3002758
[496] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018). https://doi.org/10.1038/s41586-018-0551-y
[497] J. R. Bankwitz et al. Towards ‘smart transceivers’ in FPGA-controlled lithium-niobate-on-insulator integrated circuits for edge computing applications. Opt. Mater. Express, 13, 3667-3676(2023). https://doi.org/10.1364/OME.503340
[498] G. Dabos et al. Neuromorphic photonic technologies and architectures: scaling opportunities and performance frontiers. Opt. Mater. Express, 12, 2343-2367(2022). https://doi.org/10.1364/OME.452138
[499] B. Shi, N. Calabretta, R. Stabile. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron., 26, 7701111(2019). https://doi.org/10.1109/JSTQE.2019.2945548
[500] M. Chen et al. Generic photonic integrated linear operator processor(2023).
[501] T. Tsurugaya et al. Cross-gain modulation-based photonic reservoir computing using low-power-consumption membrane SOA on Si. Opt. Express, 30, 22871-22884(2022). https://doi.org/10.1364/OE.458264
[502] D. Zheng et al. Full-function Pavlov associative learning photonic neural networks based on SOA and DFB-SA. APL Photonics, 9, 026102(2024). https://doi.org/10.1063/5.0173301
[503] J. Feldmann et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE J. Sel. Top. Quantum Electron., 26, 8301807(2019). https://doi.org/10.1109/JSTQE.2019.2956871
[504] X. Chen et al. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. Adv. Mater., 35, 2203909(2023). https://doi.org/10.1002/adma.202203909
[505] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017). https://doi.org/10.1038/nphoton.2017.126
[506] W. H. Pernice, H. Bhaskaran. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett., 101, 171101(2012). https://doi.org/10.1063/1.4758996
[507] C. Wu et al. Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films. Sci. Adv., 10, eadk1361(2024). https://doi.org/10.1126/sciadv.adk1361
[508] C. Ríos et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX, 3, 26(2022). https://doi.org/10.1186/s43074-022-00070-4
[509] C. Ríos et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics, 9, 725-732(2015). https://doi.org/10.1038/nphoton.2015.182
[510] Z. Cheng et al. On-chip photonic synapse. Sci. Adv., 3, e1700160(2017). https://doi.org/10.1126/sciadv.1700160
[511] C. Ríos et al. In-memory computing on a photonic platform. Sci. Adv., 5, eaau5759(2019). https://doi.org/10.1126/sciadv.aau5759
[512] J. Feldmann et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017). https://doi.org/10.1038/s41467-017-01506-3
[513] C. Wu et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021). https://doi.org/10.1038/s41467-020-20365-z
[514] X. Li et al. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 7, 218-225(2020). https://doi.org/10.1364/OPTICA.379228
[515] T. Tuma et al. Stochastic phase-change neurons. Nat. Nanotechnol., 11, 693-699(2016). https://doi.org/10.1038/nnano.2016.70
[516] B. Gholipour et al. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv. Opt. Mater., 3, 635-641(2015). https://doi.org/10.1002/adom.201400472
[517] G. Agnus et al. Two-terminal carbon nanotube programmable devices for adaptive architectures. Adv. Mater., 22, 702-706(2010). https://doi.org/10.1002/adma.200902170
[518] J. Geler-Kremer et al. A non-volatile optical memory in silicon photonics(2021).
[519] P. Freire et al. Artificial neural networks for photonic applications—from algorithms to implementation: tutorial. Adv. Opt. Photonics, 15, 739-834(2023). https://doi.org/10.1364/AOP.484119
[520] Y. Huang et al. Programmable low-threshold optical nonlinear activation functions for photonic neural networks. Opt. Lett., 47, 1810-1813(2022). https://doi.org/10.1364/OL.451287
[521] F. Ashtiani, A. J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606, 501-506(2022). https://doi.org/10.1038/s41586-022-04714-0
[522] I. A. Williamson et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700412(2019). https://doi.org/10.1109/JSTQE.2019.2930455
[523] Y. Shi et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nat. Commun., 13, 6048(2022). https://doi.org/10.1038/s41467-022-33877-7
[524] A. Hazan et al. MXene-Nanoflakes-enabled all-optical nonlinear activation function for on-chip photonic deep neural networks. Adv. Mater., 35, 2210216(2023). https://doi.org/10.1002/adma.202210216
[525] B. Dong et al. Turnkey locking of quantum-dot lasers directly grown on Si. Nat. Photonics, 18, 669-676(2024). https://doi.org/10.1038/s41566-024-01413-2
[526] J. Carrasquilla. Machine learning for quantum matter. Adv. Phys.: X, 5, 1797528(2020). https://doi.org/10.1080/23746149.2020.1797528
[527] E. P. Van Nieuwenburg, Y.-H. Liu, S. D. Huber. Learning phase transitions by confusion. Nat. Phys., 13, 435-439(2017). https://doi.org/10.1038/nphys4037
[528] K. Ch’Ng et al. Machine learning phases of strongly correlated fermions. Phys. Rev. X, 7, 031038(2017). https://doi.org/10.1103/PhysRevX.7.031038
[529] P. B. Wigley et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep., 6, 25890(2016). https://doi.org/10.1038/srep25890
[530] L. Cincio et al. Learning the quantum algorithm for state overlap. New J. Phys., 20, 113022(2018). https://doi.org/10.1088/1367-2630/aae94a
[531] P. Rebentrost, M. Mohseni, S. Lloyd. Quantum support vector machine for big data classification. Phys. Rev. Lett., 113, 130503(2014). https://doi.org/10.1103/PhysRevLett.113.130503
[532] S. Lu, S. L. Braunstein. Quantum decision tree classifier. Quantum Inf. Process., 13, 757-770(2014). https://doi.org/10.1007/s11128-013-0687-5
[533] M. Benedetti et al. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol., 4, 043001(2019). https://doi.org/10.1088/2058-9565/ab4eb5
[534] P. Rebentrost et al. Quantum Hopfield neural network. Phys. Rev. A, 98, 042308(2018). https://doi.org/10.1103/PhysRevA.98.042308
[535] V. Dunjko, J. M. Taylor, H. J. Briegel. Quantum-enhanced machine learning. Phys. Rev. Lett., 117, 130501(2016). https://doi.org/10.1103/PhysRevLett.117.130501
[536] A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103, 150502(2009). https://doi.org/10.1103/PhysRevLett.103.150502
[537] J. Liu et al. Towards provably efficient quantum algorithms for large-scale machine-learning models. Nat. Commun., 15, 434(2024). https://doi.org/10.1038/s41467-023-43957-x
[538] J. Biamonte et al. Quantum machine learning. Nature, 549, 195-202(2017). https://doi.org/10.1038/nature23474
[539] S. Aaronson. Read the fine print. Nat. Phys., 11, 291-293(2015). https://doi.org/10.1038/nphys3272
[540] K. Bharti et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94, 015004(2022). https://doi.org/10.1103/RevModPhys.94.015004
[541] Z. Li et al. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 114, 140504(2015). https://doi.org/10.1103/PhysRevLett.114.140504
[542] K. Anai et al. Continuous-variable quantum kernel method on a programmable photonic quantum processor. Phys. Rev. A, 110, 022404(2024). https://doi.org/10.1103/PhysRevA.110.022404
[543] V. Havlíček et al. Supervised learning with quantum-enhanced feature spaces. Nature, 567, 209-212(2019). https://doi.org/10.1038/s41586-019-0980-2
[544] T. Ono et al. Demonstration of a bosonic quantum classifier with data reuploading. Phys. Rev. Lett., 131, 013601(2023). https://doi.org/10.1103/PhysRevLett.131.013601
[545] M. Schuld, N. Killoran. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett., 122, 040504(2019). https://doi.org/10.1103/PhysRevLett.122.040504
[546] S. Yu et al. Shedding light on the future: exploring quantum neural networks through optics. Adv. Quantum Technol., 2024, 2400074(2024). https://doi.org/10.1002/qute.202400074
[547] J. Nokkala et al. Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing. Commun. Phys., 4, 53(2021). https://doi.org/10.1038/s42005-021-00556-w
[548] S. Ghosh, T. Paterek, T. C. Liew. Quantum neuromorphic platform for quantum state preparation. Phys. Rev. Lett., 123, 260404(2019). https://doi.org/10.1103/PhysRevLett.123.260404
[549] P. Mujal et al. Opportunities in quantum reservoir computing and extreme learning machines. Adv. Quantum Technol., 4, 2100027(2021). https://doi.org/10.1002/qute.202100027
[550] A. Pérez-Salinas et al. Data re-uploading for a universal quantum classifier. Quantum, 4, 226(2020). https://doi.org/10.22331/q-2020-02-06-226
[551] H.-Y. Huang, R. Kueng, J. Preskill. Predicting many properties of a quantum system from very few measurements. Nat. Phys., 16, 1050-1057(2020). https://doi.org/10.1038/s41567-020-0932-7
[552] H.-Y. Huang, R. Kueng, J. Preskill. Efficient estimation of Pauli observables by derandomization. Phys. Rev. Lett., 127, 030503(2021). https://doi.org/10.1103/PhysRevLett.127.030503
[553] J. R. McClean et al. Barren plateaus in quantum neural network training landscapes. Nat. Commun., 9, 4812(2018). https://doi.org/10.1038/s41467-018-07090-4
[554] X. Ge, R.-B. Wu, H. Rabitz. The optimization landscape of hybrid quantum–classical algorithms: from quantum control to NISQ applications. Annu. Rev. Control, 54, 314-323(2022). https://doi.org/10.1016/j.arcontrol.2022.06.001
[555] Y. Li. Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network. Light: Adv. Manuf., 4, 206-221(2023).
[556] D. Mengu, A. Ozcan. All-optical phase recovery: diffractive computing for quantitative phase imaging. Adv. Opt. Mater., 10, 2200281(2022). https://doi.org/10.1002/adom.202200281
[557] Y. Rivenson et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl., 8, 23(2019). https://doi.org/10.1038/s41377-019-0129-y
[558] J. Qi et al. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng., 7, 971-985(2023). https://doi.org/10.1038/s41551-023-01018-0
[559] N. T. Clancy et al. Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery. Biomed. Opt. Express, 3, 2567-2578(2012). https://doi.org/10.1364/BOE.3.002567
[560] N. T. Clancy et al. Multispectral imaging of organ viability during uterine transplantation surgery in rabbits and sheep. J. Biomed. Opt., 21, 106006(2016). https://doi.org/10.1117/1.JBO.21.10.106006
[561] L. Ayala et al. Spectral imaging enables contrast agent–free real-time ischemia monitoring in laparoscopic surgery. Sci. Adv., 9, eadd6778(2023). https://doi.org/10.1126/sciadv.add6778
[562] J. Park et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat. Methods, 20, 1645-1660(2023). https://doi.org/10.1038/s41592-023-02041-4
[563] M. E. Kandel et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat. Commun., 11, 6256(2020). https://doi.org/10.1038/s41467-020-20062-x
[564] Y. Chen et al. Dual polarization modality fusion network for assisting pathological diagnosis. IEEE Trans. Med. Imaging, 42, 304-316(2022). https://doi.org/10.1109/TMI.2022.3210113
[565] B. Duinkerken et al. Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy. NPJ Imaging, 2, 53(2024). https://doi.org/10.1038/s44303-024-00059-7
[566] A. Soker et al. Advancing automated digital pathology by rapid spectral imaging and AI for nuclear segmentation. Opt. Laser Technol., 181, 111988(2025). https://doi.org/10.1016/j.optlastec.2024.111988
[567] C.-L. Lai et al. Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: a comprehensive review. APL Bioeng., 8, 041504(2024). https://doi.org/10.1063/5.0240444