• Advanced Photonics
  • Vol. 6, Issue 4, 046005 (2024)
Shaojie Wang, Ke Chen*, Shufang Dong, Tian Jiang..., Junming Zhao and Yijun Feng*|Show fewer author(s)
Author Affiliations
  • Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.6.4.046005 Cite this Article Set citation alerts
    Shaojie Wang, Ke Chen, Shufang Dong, Tian Jiang, Junming Zhao, Yijun Feng, "Tunable topological polaritons by dispersion tailoring of an active metasurface," Adv. Photon. 6, 046005 (2024) Copy Citation Text show less
    References

    [1] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [2] G. Hu et al. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater., 8, 1901393(2020).

    [3] Z. Fei et al. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions. Phys. Rev. B, 94, 081402(2016). https://doi.org/10.1103/PhysRevB.94.081402

    [4] X. Liu et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics, 9, 30-34(2014).

    [5] J. Chen et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77-81(2012).

    [6] S. Dai et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 343, 1125-1129(2014).

    [7] Z. Cai et al. Polariton photonics using structured metals and 2D materials. Adv. Opt. Mater., 8, 1901090(2020).

    [8] P. Huo et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater., 7, 1801616(2019).

    [9] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [10] L. Ferrari et al. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, 1-40(2015).

    [11] P. Li et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [12] A. Nemilentsau et al. Switchable and unidirectional plasmonic beacons in hyperbolic two-dimensional materials. Phys. Rev. B, 99, 201405(2019).

    [13] H. N. S. Krishnamoorthy et al. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [14] I. M. Lifshitz. Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP, 11, 1130(1960).

    [15] D. Correas-Serrano et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization. J. Opt., 18, 104006(2016).

    [16] C. Wang et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun., 11, 1158(2020).

    [17] J. S. Gomez-Diaz, M. Tymchenko, A. Alu. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett., 114, 233901(2015).

    [18] J. S. Gomez-Diaz, M. Tymchenko, A. Alù. Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]. Opt. Mater. Express, 5, 2313-2329(2015).

    [19] W. Ma et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature, 596, 362-366(2021).

    [20] N. C. Passler et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature, 602, 595-600(2022).

    [21] D. Lee et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2, 1(2022).

    [22] J. S. Gomez-Diaz, A. Alù. Flatland optics with hyperbolic metasurfaces. ACS Photonics, 3, 2211-2224(2016).

    [23] Z. Guo, H. Jiang, H. Chen. Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys., 127, 071101(2020).

    [24] O. Y. Yermakov et al. Hybrid waves localized at hyperbolic metasurfaces. Phys. Rev. B, 91, 235423(2015).

    [25] P. Zheng et al. Anomalous wave propagation in topological transition metasurfaces. Adv. Opt. Mater., 7, 1801483(2019).

    [26] A. A. High et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [27] Y. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).

    [28] Y. Yang et al. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater., 9, e428(2017).

    [29] H. Chen et al. Efficient manipulation of spoof surface plasmon polaritons based on rotated complementary h-shaped resonator metasurface. IEEE Trans. Antennas Propag., 65, 7383-7388(2017).

    [30] Y. Yang et al. Magnetic hyperbolic metasurface: concept, design, and applications. Adv. Sci., 5, 1801495(2018).

    [31] O. V. Kotov, Y. E. Lozovik. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B, 100, 165424(2019).

    [32] Y. Cao et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80-84(2018).

    [33] J. M. Park et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer grapheme. Nature, 590, 249-255(2021).

    [34] Y. Cao et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [35] J. Duan et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett., 20, 5323-5329(2020).

    [36] A. Nemilentsau, T. Low, G. Hanson. Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett., 116, 066804(2016).

    [37] Z. Cai et al. Tunable optical forces enabled by bilayer van der Waals materials. Adv. Opt. Mater., 12, 2301288(2024).

    [38] Y. Liu et al. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photonics Res., 10, 2056-2065(2022).

    [39] G. Hu et al. Moiré hyperbolic metasurfaces. Nano Lett., 20, 3217-3224(2020).

    [40] G. Hu et al. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett., 118, 211101(2021).

    [41] G. Hu et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020). https://doi.org/10.1038/s41586-020-2359-9

    [42] Q. Zhang et al. Interface nano-optics with van der Waals polaritons. Nature, 597, 187-195(2021).

    [43] M. Li et al. Topologically reconfigurable magnetic polaritons. Sci. Adv., 8, eadd6660(2022).

    [44] G. Álvarez-Pérez et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated grapheme. ACS Photonics, 9, 383-390(2022).

    [45] H. Hu et al. Gate-tunable negative refraction of mid-infrared polaritons. Science, 379, 558-561(2023).

    [46] W. Tang et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun., 16, 46-61(2019).

    [47] L. Li, T. J. Cui. Information metamaterials: from effective media to real-time information processing systems. Nanophotonics, 8, 703-724(2019).

    [48] J. Zhang et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2019).

    [49] R. Feng et al. Reprogrammable digital holograms and multibit spatial energy modulation using a reflective metasurface. ACS Appl. Electron. Mater., 3, 5272-5277(2021).

    [50] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [51] J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [52] A. P. Hibbins, B. R. Evans, J. R. Sambles. Experimental verification of designer surface plasmons. Science, 308, 670-672(2005).

    [53] H. Su et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle. Laser Photonics Rev., 12, 1800010(2018).

    [54] G. Dolling et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science, 312, 892-894(2006).

    [55] J. Witzens, M. Loncar, A. Scherer. Self-collimation in planar photonic crystals. IEEE J. Sel. Top. Quantum Electron., 8, 1246-1257(2002).

    [56] MA46H120 Varactor Datasheet [Online].

    [57] N. Nguyen-Trong et al. Analysis and design of a reconfigurable antenna based on half-mode substrate-integrated cavity. IEEE Trans. Antennas Propag., 63, 3345-3353(2015).

    [58] P. Li et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun., 11, 3663(2020).

    [59] D. Correas-Serrano, A. Alù, J. S. Gomez-Diaz. Plasmon canalization and tunneling over anisotropic metasurfaces. Phys. Rev. B, 96, 075436(2017).

    [60] O. Yermakov et al. Surface waves on self-complementary metasurfaces: all-frequency hyperbolicity, extreme canalization, and TE-TM polarization degeneracy. Phys. Rev. X, 11, 031038(2021).

    [61] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435-441(2008).

    [62] L.-Z. Yin et al. Ultrathin all-angle hyperbolic metasurface retroreflectors based on directed routing of canalized plasmonics. ACS Appl. Electron. Mater., 14, 21605-21612(2022).

    [63] C. Hu et al. A metasurface with bidirectional hyperbolic surface modes and position-sensing applications. NPG Asia Mater., 10, 417-428(2018).

    [64] J. Yao et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 321, 930(2008).

    [65] Y. Yang et al. Type-I hyperbolic metasurfaces for highly-squeezed designer polaritons with negative group velocity. Nat. Commun., 10, 2002(2019).

    [66] O. Y. Yermakov et al. Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 94, 075446(2016).

    [67] M. T. Nouman et al. Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors. Sci. Rep., 6, 26452(2016).

    [68] S. Wang et al. Tunable non-diffraction spoof surface plasmon polaritons with liquid crystal terahertz metasurface(2021).

    Shaojie Wang, Ke Chen, Shufang Dong, Tian Jiang, Junming Zhao, Yijun Feng, "Tunable topological polaritons by dispersion tailoring of an active metasurface," Adv. Photon. 6, 046005 (2024)
    Download Citation