• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 114 (2011)
Shujuan ZHUO1, Mingwang SHAO1、*, Liang CHENG1, Ronghui QUE1, Dorthy Duo Duo MA2, and Shuit Tong LEE2
Author Affiliations
  • 1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
  • 2Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1007/s12200-011-0152-y Cite this Article
    Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires[J]. Frontiers of Optoelectronics, 2011, 4(1): 114 Copy Citation Text show less
    References

    [1] Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1-65

    [2] Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society, 2006, 128(28): 8998-8999

    [3] Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5-33

    [4] Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16(27): 2846-28525.

    [5] Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry, 2007, 79(17): 6480-6487

    [6] Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(11): 115123-1-115123-12

    [7] Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, 298(1): 1-24

    [8] Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C, 2007, 111(5): 1955-1961

    [9] Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337(2): 171-194

    [10] Bjerneld E J, F ldes-Papp Z, K ll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B, 2002, 106(6): 1213-1218

    [11] Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B, 2005, 109(13): 6247-6251

    [12] Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90(17): 173116

    [13] Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters, 2005, 5(12): 2482-2484

    [14] Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters, 2010, 96(10): 103108-1-103108-3

    [15] Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconatebased glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92(6): 061905

    [16] Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters, 2008, 92(13): 132105

    [17] Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915-2921

    [18] Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53-61

    [19] Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 1998, 10(10): 2837-2845

    [20] Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2004, 5(3): 183-202

    [21] Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643-7648

    [22] ShaoMW, Shan Y Y,Wong N B, Lee S T. Silicon nanowire sensorsfor bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482

    [23] Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993, 115(10): 3887-3896

    [24] Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738-17739

    [25] Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications, 2009, (39): 5829-5831

    [26] Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, K ll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2001, 78(6): 802-804

    Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires[J]. Frontiers of Optoelectronics, 2011, 4(1): 114
    Download Citation