• Acta Photonica Sinica
  • Vol. 48, Issue 5, 506002 (2019)
LI Jing-ling1、*, HAN Dong-dong1, HUI Zhan-qiang1, REN Kai-li1, LUO Wen-feng1, YAO Ying1, ZHAO Feng1, XIN Xiang-jun1、2, and GONG Jia-min1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194805.0506002 Cite this Article
    LI Jing-ling, HAN Dong-dong, HUI Zhan-qiang, REN Kai-li, LUO Wen-feng, YAO Ying, ZHAO Feng, XIN Xiang-jun, GONG Jia-min. Switchable Mode Locking of Rectangular Dissipative Soliton and Gaussian-spectrum Pulse in Normal Dispersion Fiber Laser[J]. Acta Photonica Sinica, 2019, 48(5): 506002 Copy Citation Text show less
    References

    [1] MALINAUSKAS M, UKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Application, 2016, 5(8): e16133.

    [2] LIU M L, WANG L R, SUN Q B, et al. Attosecond metrology: Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 238-243.

    [3] YAO X, LIU X. Beam dynamics in disordered PT-symmetric optical lattices based on eigenstate analyses[J].Physical Review A, 2017, 95: 033804.

    [4] MAO D,FENG T, ZHANG W, et al. Ultrafast all-fiber based cylindrical-vector beam laser[J]. Applied Physics Letters, 2017, 110(2): 021107.

    [5] CHEN H J, LIU M, YAO J, et al. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion [J]. Optics Express, 2018, 26(3): 2972-2982.

    [6] LI M M, HOU L, LIN Q M, et al. Wide-spectrum all-normal-dispersion Yb-doped fiber laser[J]. Acta Photonica Sinica, 2017, 46(1): 0114002.

    [7] KRZEMPEK K, SOBON G, KACZMAREK P, et al. A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser[J]. Laser Physics Letters, 2013, 10(10): 105103.

    [8] ILDAY F , BUCKLEY J R, CLARK W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213092.

    [9] HAN D D, LIU X, CUI Y, et al. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser[J]. Optics Letters, 2014, 39(6): 1565-1568.

    [10] BAO Q L, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [11] YANG H. Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber[J]. Journal of Modern Optics, 2015, 63(17): 1363-1367.

    [12] CHEN Y, JIANG G, CHEN S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

    [13] CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide: current status and future perspectives[J]. Scientific Reports, 2017, 7: 40080.

    [14] GUO B, WANG S H, WU Z X, et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber[J]. Optics Express, 2018, 26(18): 22750-22760.

    [15] LI X, WU K, SUN Z, et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 25266.

    [16] KOBTEV S, IVANEBKO A, GLADUSH Y, et al. Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film[J]. Optics Express, 2016, 24(25): 28768-28773.

    [17] LIU X. Interaction and motion of solitons in passively-mode-locked fiber lasers[J].Physical Review A, 2011, 84(5): 053828.

    [18] SOTOR J, BOGUSLAWSKI J, MARTYNKIEN T, et al. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a grapheme saturable absorber[J]. Optics Letters, 2017, 41(8): 1592-1595.

    [19] ILDAY F O, BUCKLEY J R, CLARK W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213902.

    [20] PENG J S, SOROKINA M, SUGAVANAMS, et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode locked fibre lasers[J]. Communications Physics, 2018, 1: 20.

    [21] SHAO G, SONG Y, ZHAO L, et al. Vector gain-guided dissipative solitons in a net normal dispersive fiber laser[J]. IEEE Photonics Technology Letters, 2016, 28(9): 975-978.

    [22] ZHAO G, LIN W, CHEN H, et al. Dissipative soliton resonance in Bismuth-doped fiber laser[J]. Optics Express, 2017, 25(17): 20923-20931.

    [23] YUN L, ZHAO W. Nanotube mode locked, wavelength-tunable, conventional and dissipative solitons fiber laser[J].Optics Communications, 2018, 406(1): 205-208.

    [24] WANG L R, LIU X M, GONG Y K. Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers[J].Laser Physics Letters, 2010, 7(1): 63-67.

    [25] LIU X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Physical Review A, 2010, 81(2): 023811.

    [26] BABIN S A, PODIVILOV E V, KHARENKO D S, et al. Multicolour nonlinearly bound chirped dissipative solitons[J]. Nature Communications, 2014, 5: 4653.

    [27] LYU Y, ZOU X, SHI H, et al. Multipulse dynamics under dissipative soliton resonance conditions[J]. Optics Express, 2017, 25(12): 13286-13295.

    [28] WANG L R, LIU X M, GONG Y K, et al. Observations of four types of pulses in a fiber laser with large net-normal dispersion [J]. Optics Express, 2011, 19(8): 7616-7624.

    [29] HAN D D. Experimental and theoretical investigations of a tunable dissipative soliton fiber laser[J]. Applied Optics, 2014, 53(32): 7629-7633.

    [30] MAN W S, TAM H Y, DEMOKAN M S, et al. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser[J]. Journal of the Optical Society of America B, 2000, 17(1): 28-33.

    LI Jing-ling, HAN Dong-dong, HUI Zhan-qiang, REN Kai-li, LUO Wen-feng, YAO Ying, ZHAO Feng, XIN Xiang-jun, GONG Jia-min. Switchable Mode Locking of Rectangular Dissipative Soliton and Gaussian-spectrum Pulse in Normal Dispersion Fiber Laser[J]. Acta Photonica Sinica, 2019, 48(5): 506002
    Download Citation