• Optics and Precision Engineering
  • Vol. 33, Issue 1, 148 (2025)
Jing DI1, Heran WANG1,*, Chan LIANG1, Jizhao LIU2, and Jing LIAN1
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • 2School of Information Science and Engineering, Lanzhou University, Lanzhou730000, China
  • show less
    DOI: 10.37188/OPE.20253301.0148 Cite this Article
    Jing DI, Heran WANG, Chan LIANG, Jizhao LIU, Jing LIAN. Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images[J]. Optics and Precision Engineering, 2025, 33(1): 148 Copy Citation Text show less
    References

    [1] Y Y HUANG, X H LI, Z S DU et al. Spatiotemporal enhancement and interlevel fusion network for remote sensing images change detection. IEEE Transactions on Geoscience and Remote Sensing, 62, 3360516(2024).

    [2] W J ZHOU, J F LIU, J S LEI et al. GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790-7802(2021).

    [3] C L LI, C L ZHU, Y HUANG et al. Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking, 831-847(2018).

    [4] P GUPTA, N JAIN. Anisotropic diffusion filter based fusion of NSST transformed medical images. Biomedical Signal Processing and Control, 90, 105819(2024).

    [5] Q Y XIE, L MA, Z Q GUO et al. Infrared and visible image fusion based on NSST and phase consistency adaptive DUAL channel PCNN. Infrared Physics & Technology, 131, 104659(2023).

    [6] 袁代玉, 袁丽华, 习腾彦. 潜在低秩表示下的双判别器生成对抗网络的图像融合. 光学 精密工程, 31, 1085-1095(2023).

         D Y YUAN, L H YUAN, T Y XI et al. Image fusion of dual-discriminator generative adversarial network and latent low-rank representation. Opt. Precision Eng., 31, 1085-1095(2023).

    [7] H SUN, S M WU, L J MA. Adversarial attacks on GAN-based image fusion. Information Fusion, 108, 102389(2024).

    [8] Z Y ZHANG, C Y HE, H WANG et al. Fusion of infrared and visible images via multi-layer convolutional sparse representation. Journal of King Saud University-Computer and Information Sciences, 36, 102090(2024).

    [9] ZH L LONG, Y M DENG, J XIE et al. Infrared and visible images fusion based on improved multi-scale structural fusion. Opt. Precision Eng., 32, 1101-1110(2024).

         龙志亮, 邓月明, 谢竞. 改进多尺度结构化融合的红外与可见光图像融合. 光学 精密工程, 32, 1101-1110(2024).

    [10] H XU, J Y MA, J J JIANG et al. U2Fusion: a unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).

    [11] J Y MA, W YU, P W LIANG et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11-26(2019).

    [12] J Y LIU, X FAN, Z B HUANG et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, 18, 5802-5811(2022).

    [13] P DHARIWAL, A NICHOL, P DHARIWAL et al. Diffusion models beat GANs on image synthesis, 8780-8794(2024).

    [14] A JAIN, P ABBEEL et al. Denoising diffusion probabilistic models, 6840-6851(2020).

    [15] J SONG, CH L MENG, S ERMON. Denoising Diffusion Implicit Models(2010).

    [16] R ROMBACH, A BLATTMANN, D LORENZ et al. High-resolution image synthesis with latent diffusion models, 18, 10684-10695(2022).

    [17] Z X ZHAO, H W BAI, Y Z ZHU et al. DDFM: denoising diffusion model for multi-modality image fusion, 1, 8082-8093(2023).

    [18] J VAN AARDT. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. Journal of Applied Remote Sensing, 2(2008).

    [19] D F QIU, X Y HU, P W LIANG et al. A deep progressive infrared and visible image fusion network. Journal of Image and Graphics, 28, 156-165(2023).

    [20] S SINGH, H SINGH, G BUENO et al. A review of image fusion: methods, applications and performance metrics. Digital Signal Processing, 137, 104020(2023).

    [21] L F TANG, H ZHANG, H XU et al. Deep learning-based image fusion: a survey. Journal of Image and Graphics, 28, 3-36(2023).

    [22] W D ZHAO, D WANG, H C LU. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology, 29, 1102-1115(2018).

    [23] D MANJUSHA. Udhav bhosale. image fusion and image quality assessment of fused images. International Journal of Image Processing (IJIP), 4, 484(2010).

    [24] X C ZHANG, Y DEMIRIS. Visible and infrared image fusion using deep learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 10535-10554(2023).

    [25] H LI, X J WU, J KITTLER. RFN-Nest: an end-to-end residual fusion network for infrared and visible images. Information Fusion, 73, 72-86(2021).

    [26] H ZHANG, J Y MA. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. International Journal of Computer Vision, 129, 2761-2785(2021).

    [27] Z X ZHAO, H W BAI, J S ZHANG et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion, 17, 5906-5916(2023).

    [28] L F TANG, X Y XIANG, H ZHANG et al. DIVFusion: Darkness-free infrared and visible image fusion. Information Fusion, 91, 477-493(2023).

    [29] J Y MA, L F TANG, F FAN et al. SwinFusion: cross-domain long-range learning for general image fusion via swin transformer. CAA Journal of Automatica Sinica, 9, 1200-1217(2022).

    [30] Y QIAN, G LIU, H J TANG et al. BTSFusion: Fusion of infrared and visible image via a mechanism of balancing texture and salience. Optics and Lasers in Engineering, 173, 107925(2024).

    Jing DI, Heran WANG, Chan LIANG, Jizhao LIU, Jing LIAN. Conditional diffusion and multi-channel high-low frequency parallel fusion of infrared and visible light images[J]. Optics and Precision Engineering, 2025, 33(1): 148
    Download Citation