• High Power Laser and Particle Beams
  • Vol. 31, Issue 12, 125002 (2019)
Xiaoming Zhao, Chengwei Sun*, Qizhi Sun, Yuesong Jia, and Weidong Qin
Author Affiliations
  • Institute of Fluid Physics, CAEP, Mianyang 621999, China
  • show less
    DOI: 10.11884/HPLPB201931.190047 Cite this Article
    Xiaoming Zhao, Chengwei Sun, Qizhi Sun, Yuesong Jia, Weidong Qin. Compressed strong magnetic field confinement effect on alpha particle energy in field-reversed configuration plasma target[J]. High Power Laser and Particle Beams, 2019, 31(12): 125002 Copy Citation Text show less
    References

    [1] Tuszewski M. Field reversed configurations[J]. Nucl Fusion, 28, 2033-2092(1988).

    [2] Steinhauer L C. Review of field-reversed configurations[J]. Phys Plasmas, 18, 070501(2011).

    [3] Degnan J H, Amdahl D J, Domonkos M. Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment[J]. Nucl Fusion, 53, 093003(2013).

    [4] Degnan J H, Amdahl D J, Brown A. Experimental and computational progress on liner implosions for compression of FRCs[J]. IEEE Trans Plasma Sci, 36, 80-91(2008).

    [5] Intrator T, Zhang S Y, Degnan J H. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Phys Plasmas, 11, 2580-2585(2004).

    [6] Sun Q Z, Jia Y S, Yang X J. Formation of field-reversed-configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2, 263-274(2017).

    [8] Wang X G, Wang G Q, Liu B. Modeling for compression of field-reversed configurations by an imploding liner[J]. Phys Plasmas, 23, 112706(2016).

    [9] Spencer R L, Tuszewski M, Linford R K. Adiabatic compression of elongated field-reversed configurations[J]. Phys Fluids, 26, 1564-1573(1983).

    [10] Yoshimura S, Sugimoto S, Ohi S. Electron cyclotron current drive in a lower hybrid current drive plasma[J]. Nucl Fusion, 39, 2009-2014(1999).

    [11] Zhang S Y. MHD instability of field-reversed configuration[J]. IEEE Trans Plasma Sci, 34, 223-229(2006).

    [12] Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 23, 263-284(1983).

    [13] Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 22, 122712(2015).

    [15] Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Fusion, 40, 59-68(2000).

    [17] Zhao J B, Sun C W, Luo B Q. Loading circuit coupled magnetohydrodynamic simulation of sample configurations in isentropic compression experiments[J]. IEEE Tans Plasma Sci, 43, 1068-1077(2015).

    [18] Zhao X M, Sun Q Z, Sun C W. Simulation on the compressed field reversed configuration with alpha particle self-heating[J]. Plasma Phys Control Fusion, 61, 075015(2019).

    [19] Linerman M A, Velikovich A L. Distribution function and diffusion of alpha particles in DT fusion plasma[J]. J Plasma Phys, 31, 369-380(1984).

    [20] Braginskii S I. Transpt processes in a plasma; in Reviews of PlasmaPhysics[M]. New Yk: Springer, 1965: 205316.

    [21] Nozachi K, Nishihara K. Thermonuclear reaction wave in high density plasma[J]. J Phys Soc Japan, 43, 1393-1399(1977).

    [23] Li C G, Yang X J. Modeling and numerical analysis of a magneto-inertial fusion concept with the target created through FRC merging[J]. Phys Plasmas, 23, 102702(2016).

    Xiaoming Zhao, Chengwei Sun, Qizhi Sun, Yuesong Jia, Weidong Qin. Compressed strong magnetic field confinement effect on alpha particle energy in field-reversed configuration plasma target[J]. High Power Laser and Particle Beams, 2019, 31(12): 125002
    Download Citation