• Nano-Micro Letters
  • Vol. 15, Issue 1, 203 (2023)
Daming Feng1, Lixue Zhou1, Timothy J. White2, Anthony K. Cheetham3, Tianyi Ma4、*, and Fengxia Wei5、**
Author Affiliations
  • 1College of Chemistry, Liaoning University, Shenyang 110036, People’s Republic of China
  • 2School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
  • 3Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
  • 4School of Science, RMIT University, Melbourne, VIC 3000, Australia
  • 5Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 08-03, Singapore 138634, Singapore
  • show less
    DOI: 10.1007/s40820-023-01169-4 Cite this Article
    Daming Feng, Lixue Zhou, Timothy J. White, Anthony K. Cheetham, Tianyi Ma, Fengxia Wei. Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia[J]. Nano-Micro Letters, 2023, 15(1): 203 Copy Citation Text show less
    References

    [1] J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al., Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    [2] X. Liu, Y. Deng, L. Zheng, M.R. Kesama, C. Tang et al., Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 12, 5517–5526 (2022).

    [3] G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023).

    [4] L. Jian, M. Li, X. Liu, G. Wang, X. Zhang et al., Unveiling hierarchical dendritic Co3O4–SnO2 heterostructure for efficient water purification. Nano Lett. 23, 3739–3747 (2023).

    [5] J.K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental concepts in heterogeneous catalysis (Fundamental Concepts in Heterogeneous Catalysis (Wiley, Hoboken, New Jersey, 2015)

    [6] C. Tang, Y. Zheng, M. Jaroniec, S. Qiao, Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).

    [7] Y. Li, H. Wang, C. Priest, S. Li, P. Xu et al., Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 33, 2000381 (2021).

    [8] Y. Li, M. Liu, X. Feng, Y. Li, F. Wu et al., How can the electrode influence the formation of the solid electrolyte interface? ACS Energy Lett. 6, 3307–3320 (2021).

    [9] S. Jin, How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 4, 1443–1445 (2019).

    [10] H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li et al., Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018).

    [11] X. Xu, X. Li, G. Liu, X. Wei, D. Feng et al., Rational design of high-flux, eco-friendly, and versatile superhydrophobic/superoleophilic PDMS@ZIF-7/Cu3(PO4)2 mesh with self-cleaning property for oil–water mixture and emulsion separation. Inorg. Chem. 62, 3260–3270 (2023).

    [12] H. Li, Y. Sun, Z. Yuan, Y. Zhu, T. Ma, Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 3222–3227 (2018).

    [13] V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja et al., Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord. Chem. Rev. 393, 48–78 (2019).

    [14] Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021).

    [15] Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021).

    [16] Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal–organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14, 181 (2022).

    [17] S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022).

    [18] H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021).

    [19] X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021).

    [20] X. Xu, M. Ma, T. Sun, X. Zhao, L. Zhang, Luminescent guests encapsulated in metal–organic frameworks for portable fluorescence sensor and visual detection applications: A review. Biosensors 13, 435 (2023).

    [21] Y. Zhang, X. Xu, L. Zhang, Capsulation of red emission chromophore into the CoZn ZIF as nanozymes for on-site visual cascade detection of phosphate ions, o-phenylenediamine, and benzaldehyde. Sci. Total Environ. 856, 159091 (2023).

    [22] G. Mínguez Espallargas, E. Coronado, Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 47, 533–557 (2018).

    [23] B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng et al., Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 33, 2006042 (2021).

    [24] C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023).

    [25] W. Zheng, L.Y.S. Lee, Metal–organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett. 6, 2838–2843 (2021).

    [26] H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham et al., MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54, 5268–5288 (2018).

    [27] Z. Zhai, W. Yan, L. Dong, S. Deng, D.P. Wilkinson et al., Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. J. Mater. Chem. A 9, 20320–20344 (2021).

    [28] L. Zou, Y. Wei, C. Hou, C. Li, Q. Xu, Single-atom catalysts derived from metal–organic frameworks for electrochemical applications. Small 17, 2004809 (2021).

    [29] Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019).

    [30] Y. Zhao, L. Zheng, D. Jiang, W. Xia, X. Xu et al., Nanoengineering metal–organic framework-based materials for use in electrochemical CO2 reduction reactions. Small 17, 2006590 (2021).

    [31] I.E. Khalil, C. Xue, W. Liu, X. Li, Y. Shen et al., The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features. Adv. Funct. Mater. 31, 2010052 (2021).

    [32] M.C. Hatzell, A decade of electrochemical ammonia synthesis. ACS Energy Lett. 7, 4132–4133 (2022).

    [33] Y. Sun, Y. Wang, H. Li, W. Zhang, X.-M. Song et al., Main group metal elements for ambient-condition electrochemical nitrogen reduction. J. Energy Chem. 62, 51–70 (2021).

    [34] Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020).

    [35] D. Feng, X. Zhang, Y. Sun, T. Ma, Surface-defective FeS2 for electrochemical NH3 production under ambient conditions. Nano Mater. Sci. 2, 132–139 (2020).

    [36] D.-M. Feng, Y. Sun, Z.-Y. Yuan, Y. Fu, B. Jia et al., Ampoule method fabricated sulfur vacancy-rich N-doped ZnS electrodes for ammonia production in alkaline media. Mater. Renew. Sustain. Energy 10, 8 (2021).

    [37] Q. Wu, B. Yu, Z. Deng, T. Li, H. Li et al., Synergy of Bi2O3 and RuO2 nanocatalysts for low-overpotential and wide pH-window electrochemical ammonia synthesis. Chem. Eur. J. 27, 17395–17401 (2021).

    [38] C.J.M. van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    [39] C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao et al., A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 32, 2001267 (2020).

    [40] L. Zhang, L. Ding, G. Chen, X. Yang, H. Wang, Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 58, 2612–2616 (2019).

    [41] Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    [42] J. Gao, B. Jiang, C. Ni, Y. Qi, X. Bi, Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 382, 123034 (2020).

    [43] R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu et al., Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 10, 3533–3540 (2020).

    [44] Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao et al., Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv. Sci. 6, 1802109 (2019).

    [45] M. Kolen, D. Ripepi, W.A. Smith, T. Burdyny, F.M. Mulder, Overcoming nitrogen reduction to ammonia detection challenges: the case for leapfrogging to gas diffusion electrode platforms. ACS Catal. 12, 5726–5735 (2022).

    [46] S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 50, 12985–13011 (2021).

    [47] X. Liu, S. Xi, H. Kim, A. Kumar, J. Lee et al., Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat. Commun. 12, 5676 (2021).

    [48] Y. Shi, B. Zhu, X. Guo, W. Li, W. Ma et al., MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 51, 840–872 (2022).

    [49] Y. Luo, G.-F. Chen, L. Ding, X. Chen, L.-X. Ding et al., Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3, 279–289 (2019).

    [50] Y. Chen, S. Li, S. Lin, M. Chen, C. Tang et al., Promising energy-storage applications by flotation of graphite ores: a review. Chem. Eng. J. 454, 139994 (2023).

    [51] X. Zhao, F. Yin, N. Liu, G. Li, T. Fan et al., Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 52, 10175–10185 (2017).

    [52] X. Yi, X. He, F. Yin, T. Yang, B. Chen et al., NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte. J. Mater. Sci. 55, 12041–12052 (2020).

    [53] Y. Cao, P. Li, T. Wu, M. Liu, Y. Zhang, Electrocatalysis of N2 to NH3 by HKUST-1 with high NH3 yield. Chem. Asian J. 15, 1272–1276 (2020).

    [54] L. Zhao, X. Kuang, C. Chen, X. Sun, Z. Wang et al., Boosting electrocatalytic nitrogen fixation via energy-efficient anodic oxidation of sodium gluconate. Chem. Commun. 55, 10170–10173 (2019).

    [55] W. Xiong, X. Cheng, T. Wang, Y. Luo, J. Feng et al., Co3(hexahydroxytriphenylene)2: a conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 13, 1008–1012 (2020).

    [56] Y. Fu, K. Li, M. Batmunkh, H. Yu, S. Donne et al., Unsaturated p-metal-based metal–organic frameworks for selective nitrogen reduction under ambient conditions. ACS Appl. Mater. Interfaces 12, 44830–44839 (2020).

    [57] X. He, F. Yin, X. Yi, T. Yang, B. Chen et al., Defective UiO-66-NH2 functionalized with stable superoxide radicals toward electrocatalytic nitrogen reduction with high Faradaic efficiency. ACS Appl. Mater. Interfaces 14, 26571–26586 (2022).

    [58] P. Liu, P. Jing, X. Xu, B. Liu, J. Zhang, Structural reconstruction of Ce-MOF with active sites for efficient electrocatalytic N2 reduction. ACS Appl. Energy Mater. 4, 12128–12136 (2021).

    [59] Y. Sun, B. Xia, S. Ding, L. Yu, S. Chen et al., Rigid two-dimensional indium metal–organic frameworks boosting nitrogen electroreduction at all pH values. J. Mater. Chem. A 9, 20040–20047 (2021).

    [60] M. Cong, X. Chen, K. Xia, X. Ding, L. Zhang et al., Selective nitrogen reduction to ammonia on iron porphyrin-based single-site metal–organic frameworks. J. Mater. Chem. A 9, 4673–4678 (2021).

    [61] H. He, H.-K. Li, Q.-Q. Zhu, C.-P. Li, Z. Zhang et al., Hydrophobicity modulation on a ferriporphyrin-based metal–organic framework for enhanced ambient electrocatalytic nitrogen fixation. Appl. Catal. B-Environ. 316, 121673 (2022).

    [62] J. Duan, Y. Sun, S. Chen, X. Chen, C. Zhao, A zero-dimensional nickel, iron–metal–organic framework (MOF) for synergistic N2 electrofixation. J. Mater. Chem. A 8, 18810–18815 (2020).

    [63] W. Li, W. Fang, C. Wu, K.N. Dinh, H. Ren et al., Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J. Mater. Chem. A 8, 3658–3666 (2020).

    [64] Y. Yang, S. Wang, H. Wen, T. Ye, J. Chen et al., Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 58, 15362–15366 (2019).

    [65] X.-W. Lv, L. Wang, G. Wang, R. Hao, J.-T. Ren et al., ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. J. Mater. Chem. A 8, 8868–8874 (2020).

    [66] H. He, Q.-Q. Zhu, Y. Yan, H.-W. Zhang, Z.-Y. Han et al., Metal–organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl. Catal. B Environ. 302, 120840 (2022).

    [67] L. Wen, K. Sun, X. Liu, W. Yang, L. Li et al., Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. (2023).

    [68] H.K. Lee, C.S.L. Koh, Y.H. Lee, C. Liu, I.Y. Phang et al., Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018).

    [69] C.S.L. Koh, H.K. Lee, H.Y. Fan Sim, X. Han, G.C. Phan-Quang et al., Turning water from a hindrance to the promotor of preferential electrochemical nitrogen reduction. Chem. Mater. 32, 1674–1683 (2020).

    [70] H.Y.F. Sim, J.R.T. Chen, C.S.L. Koh, H.K. Lee, X. Han et al., ZIF-induced d-band modification in a bimetallic nanocatalyst: achieving over 44% efficiency in the ambient nitrogen reduction reaction. Angew. Chem. Int. Ed. 59, 16997–17003 (2020).

    [71] X. Zhang, A. Chen, L. Chen, Z. Zhou, 2D materials bridging experiments and computations for electro/photocatalysis. Adv. Energy Mater. 12, 2003841 (2022).

    [72] X. Liang, X. Ren, Q. Yang, L. Gao, M. Gao et al., A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13, 2843–2848 (2021).

    [73] W.-Y. Xu, C. Li, F.-L. Li, J.-Y. Xue, W. Zhang et al., A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots. Sci. China Chem. 65, 885–891 (2022).

    [74] J. Duan, D. Shao, X. He, Y. Lu, W. Wang, Model MoS2@ZIF-71 interface acts as a highly active and selective electrocatalyst for catalyzing ammonia synthesis. Colloids Surf. Physicochem. Eng. Asp. 619, 126529 (2021).

    [75] Y. Lv, Y. Wang, M. Yang, Z. Mu, S. Liu et al., Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal–organic frameworks. J. Mater. Chem. A 9, 1480–1486 (2021).

    [76] S. Zhou, W. Pei, Y. Zhao, X. Yang, N. Liu et al., Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. Npj Comput. Mater. 7, 186 (2021).

    [77] Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen et al., Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018).

    [78] S. Mukherjee, D.A. Cullen, S. Karakalos, K. Liu, H. Zhang et al., Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217–226 (2018).

    [79] P. Song, L. Kang, H. Wang, R. Guo, R. Wang, Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 11, 12408–12414 (2019).

    [80] J. Wang, H. Huang, P. Wang, S. Wang, J. Li, N, S synergistic effect in hierarchical porous carbon for enhanced NRR performance. Carbon 179, 358–364 (2021).

    [81] Z. Geng, Y. Liu, X. Kong, P. Li, K. Li et al., Achieving a record-high yield rate of 120.9 μgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018).

    [82] H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han et al., Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019).

    [83] F. Lü, S. Zhao, R. Guo, J. He, X. Peng et al., Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 61, 420–427 (2019).

    [84] R. Zhang, L. Jiao, W. Yang, G. Wan, H.-L. Jiang, Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. J. Mater. Chem. A 7, 26371–26377 (2019).

    [85] Y. Liu, Z. Zhao, W. Wei, X. Jin, G. Wang et al., Single-atom Fe-N4 on a carbon substrate for nitrogen reduction reaction. ACS Appl. Nano Mater. 4, 13001–13009 (2021).

    [86] Y. Liu, Q. Xu, X. Fan, X. Quan, Y. Su et al., Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions. J. Mater. Chem. A 7, 26358–26363 (2019).

    [87] Y. Gao, Z. Han, S. Hong, T. Wu, X. Li et al., ZIF-67-derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction. ACS Appl. Energy Mater. 2, 6071–6077 (2019).

    [88] S. Mukherjee, X. Yang, W. Shan, W. Samarakoon, S. Karakalos et al., Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 4, 1900821 (2020).

    [89] Z. Xi, K. Shi, X. Xu, P. Jing, B. Liu et al., Boosting Nitrogen reduction reaction via electronic coupling of atomically dispersed bismuth with titanium nitride nanorods. Adv. Sci. 9, 2104245 (2022).

    [90] Z. Zhang, K. Yao, L. Cong, Z. Yu, L. Qu et al., Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction. Catal. Sci. Technol. 10, 1336–1342 (2020).

    [91] A. Liu, X. Liang, Q. Yang, X. Ren, M. Gao et al., Metal-organic-framework-derived cobalt-doped carbon material for electrochemical ammonia synthesis under ambient conditions. ChemElectroChem 7, 4900–4905 (2020).

    [92] F. Yin, X. Lin, X. He, B. Chen, G. Li et al., High Faraday efficiency for electrochemical nitrogen reduction reaction on Co@N-doped carbon derived from a metal-organic framework under ambient conditions. Mater. Lett. 248, 109–113 (2019).

    [93] Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu et al., Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9, 336–344 (2019).

    [94] F. Wang, L. Zhang, T. Wang, F. Zhang, Q. Liu et al., In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N2 reduction to NH3. Inorg. Chem. 60, 7584–7589 (2021).

    [95] Q. Wu, Y. Sun, Q. Zhao, H. Li, Z. Ju et al., Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants. Nano Res. 16, 4574–4581 (2023).

    [96] M. Ma, X. Han, H. Li, X. Zhang, Z. Zheng et al., Tuning electronic structure of PdZn nanocatalyst via acid-etching strategy for highly selective and stable electrolytic nitrogen fixation under ambient conditions. Appl. Catal. B Environ. 265, 118568 (2020).

    [97] L. Cong, K. Yao, S. Zhang, Z. Zhang, Z. Yu et al., Facile synthesis of bimetallic N-doped carbon hybrid material for electrochemical nitrogen reduction. J. Energy Chem. 59, 715–720 (2021).

    [98] Y. Zhang, J. Hu, C. Zhang, Y. Liu, M. Xu et al., Bimetallic Mo–Co nanoparticles anchored on nitrogen-doped carbon for enhanced electrochemical nitrogen fixation. J. Mater. Chem. A 8, 9091–9098 (2020).

    [99] S. Chen, H. Jang, J. Wang, Q. Qin, X. Liu et al., Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. J. Mater. Chem. A 8, 2099–2104 (2020).

    [100] C. Ma, D. Liu, Y. Zhang, J. Yong Lee, J. Tian et al., MOF-derived Fe2O3@MoS2: An efficient electrocatalyst for ammonia synthesis under mild conditions. Chem. Eng. J. 430, 132694 (2022).

    [101] X. Wang, Z. Feng, B. Xiao, J. Zhao, H. Ma et al., Polyoxometalate-based metal–organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Green Chem. 22, 6157–6169 (2020).

    [102] J. Duan, D. Shao, W. Wang, D. Zhang, C. Li, Strongly coupled molybdenum phosphide@phosphorus-doped porous carbon derived from MOF used in N2 electroreduction under ambient conditions. Microporous Mesoporous Mater. 313, 110852x (2021).

    [103] Z. Feng, G. Li, X. Wang, C.J. Gómez-García, J. Xin et al., FeS2/MoS2@RGO hybrid materials derived from polyoxomolybdate-based metal–organic frameworks as high-performance electrocatalyst for ammonia synthesis under ambient conditions. Chem. Eng. J. 445, 136797 (2022).

    [104] T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li et al., Greatly Improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem. Int. Ed. 58, 18449–18453 (2019).

    [105] Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt et al., Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide–carbon composites. Angew. Chem. Int. Ed. 58, 13101–13106 (2019).

    [106] S. Luo, X. Li, M. Wang, X. Zhang, W. Gao et al., Long-term electrocatalytic N2 fixation by MOF-derived Y-stabilized ZrO2: Insight into the deactivation mechanism. J. Mater. Chem. A 8, 5647–5654 (2020).

    [107] S. Luo, X. Li, B. Zhang, Z. Luo, M. Luo, MOF-derived Co3O4@NC with core–shell structures for N2 electrochemical reduction under ambient conditions. ACS Appl. Mater. Interfaces 11, 26891–26897 (2019).

    [108] S. Luo, X. Li, W. Gao, H. Zhang, M. Luo, An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes. Sustain. Energy Fuels 4, 164–170 (2020).

    [109] L. Wen, X. Li, R. Zhang, H. Liang, Q. Zhang et al., Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation. ACS Appl. Mater. Interfaces 13, 14181–14188 (2021).

    [110] K. Ye, Z. He, F. Wu, Y. Wang, L. Wang et al., Carbon nitride-supported CuCeO2 composites derived from bimetal MOF for efficiently electrocatalytic nitrogen fixation. Int. J. Hydrog. Energy 46, 35319–35329 (2021).

    [111] Y. Hou, N. Deng, F. Han, X. Kuang, X. Zheng, Highly efficient urea-anodizing to promote the electrochemical nitrogen reduction process. Catal. Sci. Technol. 10, 7819–7823 (2020).

    [112] P. Wei, H. Xie, X. Zhu, R. Zhao, L. Ji et al., CoS2 nanoparticles-embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N2-to-NH3 fixation under ambient conditions. ACS Sustain. Chem. Eng. 8, 29–33 (2020).

    [113] P.-Y. Liu, K. Shi, W.-Z. Chen, R. Gao, Z.-L. Liu et al., Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 287, 119956 (2021).

    [114] X. Wu, Z. Wang, Y. Han, D. Zhang, M. Wang et al., Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions. J. Mater. Chem. A 8, 543–547 (2020).

    [115] W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai et al., Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature. Small Methods 2, 1800204 (2018).

    [116] J. Li, X. Lu, J. Huang, K. Guo, C. Xu, MOF-derived Cu3P nanoparticles coated with N-doped carbon for nitrogen fixation. Chem. Commun. 58, 2678–2681 (2022).

    [117] X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu et al., Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 403, 126269 (2021).

    [118] P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    [119] J. Sun, W. Gao, H. Fei, G. Zhao, Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure. Appl. Catal. B Environ. 301, 120829 (2022).

    [120] Y. Lv, J. Su, Y. Gu, B. Tian, J. Ma et al., Atomically precise integration of multiple functional motifs in catalytic metal–organic frameworks for highly efficient nitrate electroreduction. JACS Au 2, 2765–2777 (2022).

    [121] X. Zhu, H. Huang, H. Zhang, Y. Zhang, P. Shi et al., Filling mesopores of conductive metal–organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Appl. Mater. Interfaces 14, 32176–32182 (2022).

    [122] M. Jiang, J. Su, X. Song, P. Zhang, M. Zhu et al., Interfacial reduction nucleation of noble metal nanodots on redox-active metal–organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Lett. 22, 2529–2537 (2022).

    [123] J. Qin, K. Wu, L. Chen, X. Wang, Q. Zhao et al., Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported RuxOy clusters. J. Mater. Chem. A 10, 3963–3969 (2022).

    [124] J. Li, G. Zhan, J. Yang, F. Quan, C. Mao et al., Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142, 7036–7046 (2020).

    [125] T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang et al., Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 16, 2004526 (2020).

    [126] Y. Liu, B. Deng, K. Li, H. Wang, Y. Sun et al., Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. J. Colloid Interface Sci. 614, 405–414 (2022).

    [127] S. Zhang, M. Li, J. Li, Q. Song, X. Liu, High-ammonia selective metal–organic framework–derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. 119, e2115504119 (2022).

    [128] X.-Y. Ji, K. Sun, Z.-K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15, 110 (2023).

    [129] H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122, 13478–13515 (2022).

    [130] X. Liu, L. Zheng, C. Han, H. Zong, G. Yang et al., Identifying the activity origin of a cobalt single-atom catalyst for hydrogen evolution using supervised learning. Adv. Funct. Mater. 31, 2100547 (2021).

    [131] A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021).

    [132] N.Q. Tran, L.T. Duy, D.C. Truong, B.T. Nguyen Le, B.T. Phan et al., Efficient ammonia synthesis via electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays. Chem. Commun. 58, 5257–5260 (2022).

    [133] D. Zhao, J. Liang, J. Li, L. Zhang, K. Dong et al., A TiO2-x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 58, 3669–3672 (2022).

    [134] Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun et al., Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interface Sci. 623, 513–519 (2022).

    [135] L. Ouyang, X. Fan, Z. Li, X. He, S. Sun et al., High-efficiency electroreduction of nitrite to ammonia on a Cu@TiO2 nanobelt array. Chem. Commun. 59, 1625–1628 (2023).

    [136] X. Zhang, Y. Wang, Y. Wang, Y. Guo, X. Xie et al., Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 58, 2777–2787 (2022).

    [137] B. Huang, B. Chen, G. Zhu, J. Peng, P. Zhang et al., Electrochemical ammonia synthesis via NO reduction on 2D-MOF. ChemPhysChem (2022).

    [138] B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Daming Feng, Lixue Zhou, Timothy J. White, Anthony K. Cheetham, Tianyi Ma, Fengxia Wei. Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia[J]. Nano-Micro Letters, 2023, 15(1): 203
    Download Citation