• Geographical Research
  • Vol. 39, Issue 5, 1200 (2020)
Rui SUN1、1、2、2, Shaohui CHEN1、1, and Hongbo SU1、1
Author Affiliations
  • 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
  • 2.University of Chinese Academy of Sciences, Beijing 100049, China
  • 2.中国科学院大学,北京 100049
  • show less
    DOI: 10.11821/dlyj020190399 Cite this Article
    Rui SUN, Shaohui CHEN, Hongbo SU. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200 Copy Citation Text show less
    References

    [5] Sun W Y, Song X Y, Mu X M et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau[J]. Agricultural Forest Meteorology, 209-210, 87-99(2015).

    [7] Li J J, Li Z, Lü Z M. Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986-2010[J]. Environmental Earth Sciences, 75, 1-12(2016).

    [13] Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 247, 260-270(2017).

    [14] Zhang Z, Chang J, Xu C Y et al. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years[J]. Science of the Total Environment, 635, 443(2018).

    [17] Nan C, G M, Shen, Wei Y et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland[J]. International Journal of Biometeorology, 61, 1-12(2017).

    [18] Kong D D, Zhang Q, Singh Vijay P et al. Seasonal vegetation response to climate change in the northern hemisphere (1982-2013)[J]. Global Planetary Change, 148, 1-8(2016).

    [19] He B, Chen A F, Wang H L et al. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest Region in China[J]. Remote Sensing, 7, 9998-10016(2015).

    [23] Holben Brent N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 7, 1417-1434(1986).

    [24] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 100, 172-182(2013).

    [25] Farshad F, Zohreh D, M B, et al. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrological Sciences Journal-[J]. Journal Des Sciences Hydrologiques, 61, 892-904(2016).

    [26] Sen P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Publications of the American Statistical Association, 63, 1379-1389(1968).

    [27] Mann Kendall, Rank Correlation Methods[J]. London: Griffin, 57(1975).

    [29] Hwang T, Band L E, Miniat C F et al. Divergent phenological response to hydroclimate variability in forested mountain watersheds[J]. Global Change Biology, 20, 2580-2595(2014).

    [30] Dragoni D, Rahman A F. Trends in fall phenology across the deciduous forests of the eastern USA[J]. Agricultural and Forest Meteorology, 157, 96-105(2012).

    Rui SUN, Shaohui CHEN, Hongbo SU. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200
    Download Citation