[1] Koojima A, Ikegami M, Teshima K, et al. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. Chemistry Letters, 2012, 41(4): 397-399.
[2] Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterjuction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 486-491.
[3] Correa-Baena J P, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3):710-727.
[4] Wang S, Sakurai T, Wen W, et al. Energy level alignment at interfaces in metal halide perovskite solar cells[J]. Advanced Materials Interfaces, 2018, 5(22): 1800260.
[5] Shao S, Loi M A. The role of the interfaces in perovskite solar cells[J]. Advanced Materials Interfaces, 2020, 7(1): 1901469.
[6] Chen J, Seo J Y, Park N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbl3)0.88(CsPbBr3)0.12/CuSCN interface[J]. Advanced Energy Materials, 2018,8(12):1702714.
[7] Yang I S, Lee S, Choi J, et al. Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules[J]. Journal of Materials Chemistry A, 2019, 7(11): 6028-6037.
[8] Hawash Z, Ono L K, Qi Y, et al. Recent advances in spiro-OMeTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells[J]. Advanced Materials Interfaces, 2018, 5(1): 1700623.
[9] Wang S, Huang Z, Wang X, et al. Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells[J]. Journal of the American Chemical Society, 2018, 140(48): 16720-16730.
[10] Zhao X, Kim H S, Seo J Y, et al. Effect of selective contacts on the thermal stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7148-7153.
[11] Liu J, Wu Y, Qin C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9): 2963-2967.
[12] Kim G W, Kang G, Kim J, et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(7): 2326-2333.
[13] Li R J, Wang P Y, Chen B B, et al. NiOx/Spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21%[J]. ACS Energy Letters, 2019, 5(1): 79-86.
[14] Malinauskas T, Tomkute-Luksiene D, Sens R, et al. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11107-11116.
[15] Ptaszyński B, Skiba E, Krystek J. Thermal decomposition of alkali metal, copper(I) and silver(I) thiocyanates[J]. Thermochimica Acta, 1998, 319(s 1-2):75-85.
[16] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2): 627-637.
[17] Wang P Y, Jiang Q, Zhao Y, et al. Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives[J]. Science Bulletin, 2018, 63(11): 726-731.
[18] Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.
[19] Xie J, Liu Y, Liu J, et al. Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material[J]. Journal of Power Sources, 2015,285: 349-353.
[20] Gelmetti I, Montcada N F, Pérez-Rodríguez A, et al. Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage[J]. Energy & Environmental Science, 2019, 12(4): 1309-1316.
[21] Tan H, Che F, Wei M, et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites[J]. Nature Communications, 2018, 9(1): 1-10.
[22] Wang P Y, Li R J, Chen B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6):1905766.
[23] Jung M, Kim Y C, Jeon N J, et al. Thermal stability of CuSCN hole conductor-based perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2592-2596.
[24] Liu Y, Sun J, Yang Z, et al. 20 mm large single crystalline formamidinium perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837.
[25] Liu Y, Zhang Y, Zhao K, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30(29): 1707314.
[26] Muthu C, Agarwal S, Vijayan A, et al. Hybrid perovskite nanoparticles for high-performance resistive random access memory devices: control of operational parameters through chloride doping[J]. Advanced Materials Interfaces, 2016, 3(18): 1600092.