• Journal of Synthetic Crystals
  • Vol. 49, Issue 9, 1590 (2020)
HOU Shixin1,2,3, CUI Xinghua1,2,3, WANG Pengyang1,2,3,*, HUANG Qian1,2,3..., DING Yi1,2,3, LI Yuelong1,2,3, ZHANG Dekun1,2,3, ZHAO Ying1,2,3 and ZHANG Xiaodan1,2,3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    HOU Shixin, CUI Xinghua, WANG Pengyang, HUANG Qian, DING Yi, LI Yuelong, ZHANG Dekun, ZHAO Ying, ZHANG Xiaodan. Preliminary Study on Interface Energy Level Alignment and Stability of n-i-p Type Perovskite Solar Cells Based on CuSCN[J]. Journal of Synthetic Crystals, 2020, 49(9): 1590 Copy Citation Text show less
    References

    [1] Koojima A, Ikegami M, Teshima K, et al. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. Chemistry Letters, 2012, 41(4): 397-399.

    [2] Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterjuction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(6): 486-491.

    [3] Correa-Baena J P, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells[J]. Energy & Environmental Science, 2017, 10(3):710-727.

    [4] Wang S, Sakurai T, Wen W, et al. Energy level alignment at interfaces in metal halide perovskite solar cells[J]. Advanced Materials Interfaces, 2018, 5(22): 1800260.

    [5] Shao S, Loi M A. The role of the interfaces in perovskite solar cells[J]. Advanced Materials Interfaces, 2020, 7(1): 1901469.

    [6] Chen J, Seo J Y, Park N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbl3)0.88(CsPbBr3)0.12/CuSCN interface[J]. Advanced Energy Materials, 2018,8(12):1702714.

    [7] Yang I S, Lee S, Choi J, et al. Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules[J]. Journal of Materials Chemistry A, 2019, 7(11): 6028-6037.

    [8] Hawash Z, Ono L K, Qi Y, et al. Recent advances in spiro-OMeTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells[J]. Advanced Materials Interfaces, 2018, 5(1): 1700623.

    [9] Wang S, Huang Z, Wang X, et al. Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells[J]. Journal of the American Chemical Society, 2018, 140(48): 16720-16730.

    [10] Zhao X, Kim H S, Seo J Y, et al. Effect of selective contacts on the thermal stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7148-7153.

    [11] Liu J, Wu Y, Qin C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9): 2963-2967.

    [12] Kim G W, Kang G, Kim J, et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(7): 2326-2333.

    [13] Li R J, Wang P Y, Chen B B, et al. NiOx/Spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21%[J]. ACS Energy Letters, 2019, 5(1): 79-86.

    [14] Malinauskas T, Tomkute-Luksiene D, Sens R, et al. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11107-11116.

    [15] Ptaszyński B, Skiba E, Krystek J. Thermal decomposition of alkali metal, copper(I) and silver(I) thiocyanates[J]. Thermochimica Acta, 1998, 319(s 1-2):75-85.

    [16] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2): 627-637.

    [17] Wang P Y, Jiang Q, Zhao Y, et al. Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives[J]. Science Bulletin, 2018, 63(11): 726-731.

    [18] Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.

    [19] Xie J, Liu Y, Liu J, et al. Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material[J]. Journal of Power Sources, 2015,285: 349-353.

    [20] Gelmetti I, Montcada N F, Pérez-Rodríguez A, et al. Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage[J]. Energy & Environmental Science, 2019, 12(4): 1309-1316.

    [21] Tan H, Che F, Wei M, et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites[J]. Nature Communications, 2018, 9(1): 1-10.

    [22] Wang P Y, Li R J, Chen B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6):1905766.

    [23] Jung M, Kim Y C, Jeon N J, et al. Thermal stability of CuSCN hole conductor-based perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2592-2596.

    [24] Liu Y, Sun J, Yang Z, et al. 20 mm large single crystalline formamidinium perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837.

    [25] Liu Y, Zhang Y, Zhao K, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30(29): 1707314.

    [26] Muthu C, Agarwal S, Vijayan A, et al. Hybrid perovskite nanoparticles for high-performance resistive random access memory devices: control of operational parameters through chloride doping[J]. Advanced Materials Interfaces, 2016, 3(18): 1600092.

    HOU Shixin, CUI Xinghua, WANG Pengyang, HUANG Qian, DING Yi, LI Yuelong, ZHANG Dekun, ZHAO Ying, ZHANG Xiaodan. Preliminary Study on Interface Energy Level Alignment and Stability of n-i-p Type Perovskite Solar Cells Based on CuSCN[J]. Journal of Synthetic Crystals, 2020, 49(9): 1590
    Download Citation