[1] LU Y, ZHANG Q, CHEN J. Recent progress on lithium-ion batteries with high electrochemical performance[J]. Sci Chin Chem, 2019, 62(5): 533-548.
[2] WANG M, CHEN Y, YANG C X, et al. High lithium storage performance of Co ion-doped Li4Ti5O12 induced by fast charge transport[J]. Front Chem, 2022, 10: 919552.
[3] ZHANG J, ZHENG C, LOU J, et al. Poly (ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability[J]. J Power Sources, 2019, 412: 78-85.
[4] WEI W, XU J, XU M, et al. Recent progress on Ge oxide anode materials for lithium-ion batteries[J]. Sci Chin Chem, 2018, 61(5): 515-525.
[5] WANG M, FANG P F, DU L, et al. Preparation and electrochemical properties of Li4Ti5O12@ Porous-C composite as anode of lithium ion battery[J]. J Chin Ceram Soc, 2022, 50(2): 364-371.
[6] ZUO X, WANG X, XIA Y, et al. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite[J]. J Power Sources, 2019, 412: 93-104.
[7] SAKABE J, OHTA N, OHNISHI T, et al. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries[J]. Commun Chem, 2018, 1(1): 1-9.
[8] LI P, ZHAO G, ZHENG X, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Mater, 2018, 15: 422-446.
[9] ZHOU Z, SI W, LU P, et al. A flexible CNT@ nickel silicate composite film for high-performance sodium storage[J]. J Energy Chem, 2020, 47: 29-37.
[10] ZHOU X, LIU Y, DU C, et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries[J]. J Power Sources, 2018, 381: 156-163.
[11] ZHANG X, KONG D, LI X, et al. Dimensionally designed carbon-silicon hybrids for lithium storage[J]. Adv Funct Mater, 2019, 29(2): 1806061.
[12] LI J, XIAO X, YANG F, et al. Potentiostatic intermittent titration technique for electrodes governed by diffusion and interfacial reaction[J]. J Phys Chem C, 2012, 116(1): 1472-1478.
[13] KANNAN A G, KIM S H, YANG H S, et al. Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries[J]. RSC Adv, 2016, 6(30): 25159-25166.
[14] BIAN F, YU J, SONG W, et al. A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage[J]. Electroch Acta, 2020, 330: 135248.
[15] EVANOFF K, MAGASINSKI A, YANG J, et al. Nanosilicon-coated graphene granules as anodes for Li-ion batteries[J]. Adv Energy Mater, 2011, 1(4): 495-498.
[16] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy Environ Sci, 2011, 4(10): 3844-3860.
[17] CEN Y, QIN Q, SISSON R D, et al. Effect of particle size and surface treatment on Si/graphene nanocomposite lithium-ion battery anodes[J]. Electroch Acta, 2017, 251: 690-698.
[18] CHEN D, YI R, CHEN S, et al. Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes[J]. Solid State Ionics, 2014, 254: 65-71.
[19] LIN G, WANG H, ZHANG L, et al. Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries[J]. J Power Sources, 2019, 437: 226909. 1-226909. 7.
[20] DENG B, XU R, WANG X, et al. Roll to roll manufacturing of fast charging, mechanically robust 0D/2D nanolayered Si-graphene anode with well-interfaced and defect engineered structures[J]. Energy Storage Mater, 2019, 22: 450-460.
[21] WU P, GUO C, HAN J, et al. Fabrication of double core-shell Si-based anode materials with nanostructure for lithium-ion battery[J]. RSC Adv, 2018, 8(17): 9094-9102.
[22] SUN W, HU R, ZHANG H, et al. A long-life nano-silicon anode for lithium ion batteries: Supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling[J]. Electroch Acta, 2016, 187: 1-10.
[23] WU S, WANG W, LI M, et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate[J]. Nat Commun, 2016, 7(1): 1-11.
[24] YU H, ZHANG B, BULIN C, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Sci Reports, 2016, 6(1): 1-7.
[25] ZHANG M, LI L, JIAN X, et al. Free-standing and flexible CNT/(Fe@Si@SiO2) composite anodes with kernel-pulp-skin nanostructure for high-performance lithium-ion batteries[J]. J Alloys Compounds, 2021, 878: 160396.
[26] FAN L, LIU Q, CHEN S, et al. Soft carbon as anode for high-performance sodium-based dual ion full battery[J]. Adv Energy Mater, 2017, 7(14): 1602778.
[27] ZHANG Z, DU Y, LI H. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect[J]. Nanotechnology, 2019, 31(9): 095402.
[28] MAJEED M K, SALEEM A, MA X, et al. Clay-derived mesoporous Si/rGO for anode material of lithium-ion batteries[J]. J Alloys Compounds, 2020, 848: 156590.
[29] MLLNER S, HELD T, Schmidt-Rodenkirchen A, et al. Reactive spray drying as a one-step synthesis approach towards Si/rGO anode materials for lithium-ion batteries[J]. J Electroch Soc, 2021, 168(12): 120545.
[30] PHAM T K, SHIN J H, KARIMA N C, et al. Application of recycled Si from industrial waste towards Si/rGO composite material for long lifetime lithium-ion battery[J]. J Power Sources, 2021, 506: 230244.
[31] ZHAO H, XU X, YAO Y, et al. Si nanoparticles veiled with ultrathin rGO film reduced directly by precoated Ni template: Fabrication and electrochemical performance[J]. Appl Surface Sci, 2020, 528: 146993.
[32] ZHANG Y, CHENG Y, SONG J, et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries[J]. Carbon, 2021, 181: 300-309.
[33] CHEONG J Y, JUNG J W, YOUN D Y, et al. Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics[J]. J Power Sources, 2017, 360: 434-442.