• Frontiers of Optoelectronics
  • Vol. 11, Issue 1, 2 (2018)
Tieshan YANG, Han LIN, and Baohua JIA*
Author Affiliations
  • Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
  • show less
    DOI: 10.1007/s12200-017-0753-1 Cite this Article
    Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Frontiers of Optoelectronics, 2018, 11(1): 2 Copy Citation Text show less
    References

    [1] Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

    [2] Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H, Bao Q. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27(46): 462001

    [3] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907

    [4] Brar V W, Koltonow A R, Huang J X. New discoveries and opportunities from two-dimensional Materials. ACS Photonics, 2017, 4(3): 407–411

    [5] Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200

    [6] Zhang Y B, Rubio A, Lay G L. Emergent elemental twodimensional materials beyond graphene. Journal of Physics. D, Applied Physics, 2017, 50(5): 053004

    [7] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, StranoMS, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. Recent advances in two-dimensional materials beyond Graphene. ACS Nano, 2015, 9(12): 11509–11539

    [8] Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534

    [9] Bonaccorso F, Sun Z P, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

    [10] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10(4): 216–226

    [11] Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458

    [12] Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. The Journal of Physical Chemistry Letters, 2015, 6 (21): 4280–4291

    [13] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521

    [14] Huo C X, Cai B, Yuan Z, Ma B W, Zeng H B. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1(3): 1600018

    [15] Chen S, Shi G. Two-dimensional materials for halide perovskitebased optoelectronic devices. Advanced Materials, 2017, 29(24): 1605448

    [16] Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated organic-inorganic hybrid mold as a new stamp for nanoimprint and soft lithography. Langmuir, 2005, 21(21): 9390– 9392

    [17] Pardo D A, Jabbour G E, Peyghambarian N. Application of screen printing in the fabrication of organic light-emitting devices. Advanced Materials, 2000, 12(17): 1249–1252

    [18] Caruso F. Hollow capsule processing through colloidal templating and self-assembly. Chemistry (Weinheim an der Bergstrasse, Germany), 2000, 6(3): 413–419

    [19] Zhang J C, Zhou M J, Wu W D, Tang Y J. Fabrication of diamond microstructures by using dry and wet etching methods. Plasma Science & Technology, 2013, 15(6): 552–554

    [20] Zhang Y L, Guo L,Wei S, He Y Y, Xia H, Chen Q D, Sun H B, Xiao F S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

    [21] Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

    [22] Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. Journal of Physics D, Applied Physics, 2017, 50(7): 074003

    [23] Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128

    [24] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    [25] Wang F Q. Two-dimensional materials for ultrafast lasers. Chinese Physics B, 2017, 26(3): 034202

    [26] Yoo J H, Kim E, Hwang D J. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials. MRS Bulletin, 2016, 41(12): 1002–1008

    [27] Li Z W, Hu Y H, Li Y, Fang Z Y. Light-matter interaction of 2D materials: physics and device applications. Chinese Physics B, 2017, 26(3): 036802

    [28] Ye M X, Zhang D Y, Yap Y K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6(2): 43

    [29] Zhao Y, Han Q, Cheng Z H, Jiang L, Qu L T. Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12: 14–30

    [30] Lu J, Liu H, Tok E S, Sow C H. Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45(9): 2494–2515

    [31] Xiong W, Zhou Y S, Hou WJ, Jiang L J, Mahjouri-Samani M, Park J, He X N, Gao Y, Fan L S, Baldacchini T, Silvanin J F, Lu Y F. Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8(4): 351–378

    [32] Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4(1): 4892

    [33] Zhang Y L, Guo L, Xia H, Chen Q D, Feng J, Sun H B. Photoreduction of graphene oxides: methods, properties, and applications. Advanced Optical Materials, 2014, 2(1): 10–28

    [34] Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 2009, 131(31): 11027–11032

    [35] Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S A, Kaner R B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 2010, 22(3): 419–423

    [36] Koinuma M, Ogata C, Kamei Y, Hatakeyama K, Tateishi H, Watanabe Y, Taniguchi T, Gezuhara K, Hayami S, Funatsu A, Sakata M, Kuwahara Y, Kurihara S, Matsumoto Y. Photochemical engineering of graphene oxide nanosheets. Journal of Physical Chemistry C, 2012, 116(37): 19822–19827

    [37] Li X H, Chen J S, Wang X, Schuster M E, Schl?gl R, Antonietti M. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem, 2012, 5(4): 642–646

    [38] Stroyuk A L, Andryushina N S, Shcherban’ N D, Il’in V G, Efanov V S, Yanchuk I B, Kuchmii S Y, Pokhodenko V D. Photochemical reduction of graphene oxide in colloidal solution. Theoretical and Experimental Chemistry, 2012, 48(1): 2–13

    [39] Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, van der Zant H S J, Steele G A. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Letters, 2012, 12 (6): 3187–3192

    [40] Han G H, Chae S J, Kim E S, Güne? F, Lee I H, Lee S W, Lee S Y, Lim S C, Jeong H K, Jeong M S, Lee Y H. Laser thinning for monolayer graphene formation: heat sink and interference effect. ACS Nano, 2011, 5(1): 263–268

    [41] Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H, Sow C H. Atomic healing of defects in transition metal dichalcogenides. Nano Letters, 2015, 15(5): 3524–3532

    [42] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625–628

    [43] Lu J,Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto A H, ?zyilmaz B, Sow C H. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 2015, 9(10): 10411–10421

    [44] Guo L, Zhang Y L, Han D D, Jiang H B, Wang D, Li X B, Xia H, Feng J, Chen Q D, Sun H B. Laser‐mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125

    [45] Savva K, Lin Y H, Petridis C, Kymakis E, Anthopoulos T D, Stratakis E. In situ photo-induced chemical doping of solutionprocessed graphene oxide for electronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(29): 5931–5937

    [46] Kim E, Ko C, Kim K, Chen Y, Suh J, Ryu S G, Wu K, Meng X, Suslu A, Tongay S, Wu J, Grigoropoulos C P. Site selective doping of ultrathin metal dichalcogenides by laser‐sssisted reaction. Advanced Materials, 2016, 28(2): 341–346

    [47] Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8(44): 11217–11231

    [48] Jiang H B, Zhang Y L, Han D D, Xia H, Feng J, Chen Q D, Hong Z R, Sun H B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Advanced Functional Materials, 2014, 24(29): 4595–4602

    [49] Xie Q, Hong M H, Tan H L, Chen G X, Shi L P, Chong T C. Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 2008, 449(1-2): 261–264

    [50] Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6: 8433

    [51] Lin H, Xu Z Q, Bao Q L, Jia B H. Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2016, SF2E.4, 1–2

    [52] Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    [53] Zheng X R. The optics and applications of graphene oxide. Dissertation for the Doctoral Degree. Australia: Swinburne University of Technology, 2016

    [54] Zheng X R, Cao Z, Jia B H, Qiu L, Li D, Gu M. Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing. In: Proceedings of Frontiers in Optics 2014. Tucson, Arizona: Optical Society of America, FW2B

    [55] Bao Q L, Zhang H,Wang B, Ni Z H, Lim C H Y X,Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415

    [56] Jia B H, Zheng X R, Lin H, Yang Y Y, Fraser S. Graphene oxide thin films for functional photonic devices. In: Proceedings of Frontiers in Optics 2016. Rochester, New York: Optical Society of America, FTu5B.4

    [57] Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. Focused-laser-enabled p-n junctions in graphene field-effect transistors. ACS Nano, 2013, 7(7): 5850– 5857

    [58] El-Kady M F, Kaner R B. Direct laser writing of graphene electronics. ACS Nano, 2014, 8(9): 8725–8729

    [59] Seo B H, Youn J, Shim M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano, 2014, 8(9): 8831–8836

    [60] Kymakis E, Petridis C, Anthopoulos T D, Stratakis E. Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 106–115

    [61] Kymakis E, Savva K, Stylianakis M M, Fotakis C, Stratakis E.Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Advanced Functional Materials, 2013, 23(21): 2742–2749

    [62] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137 (24): 7843–7850

    [63] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316

    [64] Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room temperature polariton lasing in allinorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988

    [65] Kanaujia P K, Vijaya Prakash G. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Physical Chemistry Chemical Physics, 2016, 18(14): 9666–9672

    [66] Chou S S, Swartzentruber B S, JanishMT, Meyer K C, Biedermann L B, Okur S, Burckel D B, Carter C B, Kaehr B. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters, 2016, 7(19): 3736–3741

    [67] Zheng X, Jia B, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials, 2014, 26(17): 2699–2703

    [68] Fraser S, Zheng X R, Qiu L, Li D, Jia B H. Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107(3): 031112

    [69] Ren J, Zheng X R, Tian Z, Li D, Wang P, Jia B H. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Applied Physics Letters, 2016, 109(22): 221105

    [70] Thangavelu P, Jong-Beom B.Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2: 032002

    [71] Dong Y, Wu Z S, Ren W C, Cheng H M, Bao X H. Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62(10): 724–740

    [72] Shao Y, El-Kady M F,Wang L J, Zhang Q, Li Y,Wang H, Mousavi M F, Kaner R B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44(11): 3639–3665

    [73] Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14(3): 271–279

    [74] Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2: 107–138

    [75] Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534–537

    [76] El-KadyMF, Strong V, Dubin S, Kaner R B. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326–1330

    [77] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4: 1475

    [78] Gao W, Singh N, Song L, Liu Z, Reddy A L M, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan P M. Direct laser writing of microsupercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6(8): 496–500

    [79] Yan Z X, Zhang Y L, Wang W, Fu X Y, Jiang H B, Liu Y Q, Verma P, Kawata S, Sun H B. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by twobeam laser interference. ACS Applied Materials & Interfaces, 2015, 7(49): 27059–27065

    [80] Wan X, Huang Y, Chen Y. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Accounts of Chemical Research, 2012, 45(4): 598–607

    [81] Ding X, Liu H, Fan Y. Graphene‐based materials in regenerative medicine. Advanced Healthcare Materials, 2015, 4(10): 1451–1468

    [82] Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8(4): 1897–1904

    [83] Lorenzoni M, Brandi F, Dante S, Giugni A, Torre B. Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3(1): 1954

    [84] Peláez R J, González-Mayorga A, Gutiérrez M C, García-Rama C, Afonso C N, Serrano M C. Tailored fringed platforms produced by laser interference for aligned neural cell growth. Macromolecular Bioscience, 2016, 16(2): 255–265

    [85] Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017, 29(1): 1603276

    [86] Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530

    [87] Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H, Chu P K. Biodegradable black phosphorusbased nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7: 12967

    [88] Gan Z, Cao Y, Evans R A, Gu M. Three-dimensional deep subdiffraction optical beam lithography with 9 nm feature size. Nature Communications, 2013, 4: 2061

    [89] Lin H, Jia B, Gu M. Dynamic generation of Debye diffractionlimited multifocal arrays for direct laser printing nanofabrication. Optics Letters, 2011, 36(3): 406–408

    Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Frontiers of Optoelectronics, 2018, 11(1): 2
    Download Citation