• High Power Laser Science and Engineering
  • Vol. 6, Issue 4, 04000e58 (2018)
Xiao Liang1、2, Xinglong Xie1, Jun Kang1, Qingwei Yang1, Hui Wei1, Meizhi Sun1, and Jianqiang Zhu1
Author Affiliations
  • 1National Laboratory on High Power Laser and Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
  • 2University of Chinese Academy of Sciences , Beijing 100049 , China
  • show less
    DOI: 10.1017/hpl.2018.52 Cite this Article Set citation alerts
    Xiao Liang, Xinglong Xie, Jun Kang, Qingwei Yang, Hui Wei, Meizhi Sun, Jianqiang Zhu. Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility[J]. High Power Laser Science and Engineering, 2018, 6(4): 04000e58 Copy Citation Text show less
    OPCPA pre-amplifier schematic and laser path diagram.
    Fig. 1. OPCPA pre-amplifier schematic and laser path diagram.
    Two BBO crystals OPCPA in ‘L’ type configuration.
    Fig. 2. Two BBO crystals OPCPA in ‘L’ type configuration.
    (a) Small signal gain bandwidth and (b) small signal gain versus various pump intensities. Different colors stand for different crystal lengths.
    Fig. 3. (a) Small signal gain bandwidth and (b) small signal gain versus various pump intensities. Different colors stand for different crystal lengths.
    Signal gain of OPCPA stage 1. Different colors stand for different crystal length combinations.
    Fig. 4. Signal gain of OPCPA stage 1. Different colors stand for different crystal length combinations.
    OPCPA stage 1 output signal beam shape from: (a) one 46 mm long crystal; (b) two crystals in ‘L’ type configuration withlength.
    Fig. 5. OPCPA stage 1 output signal beam shape from: (a) one 46 mm long crystal; (b) two crystals in ‘L’ type configuration with length.
    (a) Conversion efficiency and (b) EBP of two BBO crystal combination in ‘L’ type configuration at OPCPA stage 2.
    Fig. 6. (a) Conversion efficiency and (b) EBP of two BBO crystal combination in ‘L’ type configuration at OPCPA stage 2.
    OPA evolutionary process of signal at 808 nm and 765 nm wavelengths in stage 2. Crystals length combination in (a) and (b) is, while in (c) and (d) is. Red line represents signal, green line represents pump and blue line represents idler.
    Fig. 7. OPA evolutionary process of signal at 808 nm and 765 nm wavelengths in stage 2. Crystals length combination in (a) and (b) is , while in (c) and (d) is . Red line represents signal, green line represents pump and blue line represents idler.
    Signal output energy versus length of two BBO crystals. The first crystal length is 15 mm. The pump energy variation isto the initial 450 mJ. A and B correspond to BBO4 crystal lengths of 11 mm and 7.5 mm.
    Fig. 8. Signal output energy versus length of two BBO crystals. The first crystal length is 15 mm. The pump energy variation is to the initial 450 mJ. A and B correspond to BBO4 crystal lengths of 11 mm and 7.5 mm.
    Signal output beam shape of OPCPA stage 2 for different lengths of BBO4 crystal. (a): 11 mm; (b) 7.5 mm; (c) 9 mm.
    Fig. 9. Signal output beam shape of OPCPA stage 2 for different lengths of BBO4 crystal. (a): 11 mm; (b) 7.5 mm; (c) 9 mm.
    Measured experimental output signal spectrum from different OPCPA stages. (a) Spectra from signal seed (cyan line) and BBO2 (green line); (b) spectra from BBO3 (blue line) and BBO4 (red line).
    Fig. 10. Measured experimental output signal spectrum from different OPCPA stages. (a) Spectra from signal seed (cyan line) and BBO2 (green line); (b) spectra from BBO3 (blue line) and BBO4 (red line).
    Measurement of the output energy over 5 min.
    Fig. 11. Measurement of the output energy over 5 min.
    CCD measured output signal near-field at 161 mJ.
    Fig. 12. CCD measured output signal near-field at 161 mJ.
    Measured compressed pulse duration by an autocorrelator.
    Fig. 13. Measured compressed pulse duration by an autocorrelator.
    EnergyGainSpectrum FWHMPulse duration
    5 mJ64 nm1.6 ns
    Table 1. Simulation output parameters of OPCPA stage 1.
    EnergyConversion efficiencySpectrum FWHMPulse duration
    185 mJ50%80 nm2 ns
    Table 2. Simulation output parameters of OPCPA stage 2.
    EnergyGainConv. eff.Spectrum FWHMDuration
    Stage 13 mJ60 nm1.5 ns
    Stage 2160 mJ5343%80 nm2 ns
    Table 3. Experimental output parameters.
    Xiao Liang, Xinglong Xie, Jun Kang, Qingwei Yang, Hui Wei, Meizhi Sun, Jianqiang Zhu. Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility[J]. High Power Laser Science and Engineering, 2018, 6(4): 04000e58
    Download Citation