• Acta Physica Sinica
  • Vol. 69, Issue 18, 188101-1 (2020)
Qian Zhang, Xin-Xin Jin, Meng Zhang*, and Zheng Zheng
Author Affiliations
  • School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
  • show less
    DOI: 10.7498/aps.69.20200472 Cite this Article
    Qian Zhang, Xin-Xin Jin, Meng Zhang, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser[J]. Acta Physica Sinica, 2020, 69(18): 188101-1 Copy Citation Text show less
    Development of materials as real saturable absorber (SA) in lasers[16].
    Fig. 1. Development of materials as real saturable absorber (SA) in lasers[16].
    Atomic structures of two-dimensional (2D) materials: (a) Graphene[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41].
    Fig. 2. Atomic structures of two-dimensional (2D) materials: (a) Graphene[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41].
    Schematic diagram fabrication methods of 2D materials: Top-down, bottom-up methods and Topological transformation.
    Fig. 3. Schematic diagram fabrication methods of 2D materials: Top-down, bottom-up methods and Topological transformation.
    (a) SEM image of the Ni-MOF showing a 2D layer structure; (b) AFM image of the Ni-MOF dissolved in an IPA solution; (c) raman spectrum of the Ni-MOF[41].
    Fig. 4. (a) SEM image of the Ni-MOF showing a 2D layer structure; (b) AFM image of the Ni-MOF dissolved in an IPA solution; (c) raman spectrum of the Ni-MOF[41].
    (a) The setup of balanced twin-detector measurement; (b) the measured saturable absorption data and their corresponding fitting curve under 1934 nm laser irradiation[41].
    Fig. 5. (a) The setup of balanced twin-detector measurement; (b) the measured saturable absorption data and their corresponding fitting curve under 1934 nm laser irradiation[41].
    (a) A typical data set from Z-scan experiment of the SA device[64]; (b) the typical shapes of Z-scan measurements[55].
    Fig. 6. (a) A typical data set from Z-scan experiment of the SA device[64]; (b) the typical shapes of Z-scan measurements[55].
    Fiber integration with two-dimensional materials: Transmission integration method ((a) sandwiching structure transferring SA on fiber end[66]); evanescent-wave integration method ((b) D-typed fiber[65], (c) tapered fiber[41]).
    Fig. 7. Fiber integration with two-dimensional materials: Transmission integration method ((a) sandwiching structure transferring SA on fiber end[66]); evanescent-wave integration method ((b) D-typed fiber[65], (c) tapered fiber[41]).
    (a) Setup of graphene based mode-locked fiber laser[56]; (b) autocorrection trace; (c) optical spectrum; (d) setup of the BP mode-locked fiber laser[40]; (e) autocorrelation trace; (f) optical spectrum.
    Fig. 8. (a) Setup of graphene based mode-locked fiber laser[56]; (b) autocorrection trace; (c) optical spectrum; (d) setup of the BP mode-locked fiber laser[40]; (e) autocorrelation trace; (f) optical spectrum.
    The shortest-pulse Tm-doped fiber laser based on BP at 2 μm spectral region: (a) Setup of Tm:fiber mode-locked laser; (b) autocorrelation trace[83].
    Fig. 9. The shortest-pulse Tm-doped fiber laser based on BP at 2 μm spectral region: (a) Setup of Tm:fiber mode-locked laser; (b) autocorrelation trace[83].
    2D materialGrapheneTIsTMDsBPMOFs
    Bandgap/eV00.2—0.31—2.00.3—20.85
    Carrier lifetime Fast: < 200 fs Slow: ~1 ps Fast: 0.3—2 ps Slow: 3—23 ps Fast: ~1—3 ps Slow: 70—400 ps Fast: 360 fs Slow: 1.3 ps
    Table 1.

    Bandgaps and carrier lifetime of 2D materials.

    二维纳米材料带隙与载流子弛豫时间总结

    2D materialFabrication methodLaser typeλ/nm Pulse width/psRepetition rate/MHzPower/mWRef.
    GrapheneLPETDF19403.66.462[56]
    GrapheneCVDTDF18841.220.51.35[22]
    GrapheneNPETDF19500.25523.51210[67]
    GrapheneCVDTDF19450.258.8713[68]
    GrapheneCVDEr:ZBLAN28004225.418[69]
    BPMETDF19100.73936.81.5[40]
    BPMEEr:ZBLAN28004224613[72]
    BPSonicationEr:ZBLAN3.53460028.9140[73]
    TMDs-WTe2MSDTDF19151.2518.7239.9[74]
    TIs-Bi2Te3METm/Ho19350.79527.920[27]
    MOFsSolvothermalTDF18821.313.92.87[41]
    Table 2.

    Summary of mid-infrared mode-locked fiber lasers using 2D material based SAs.

    中红外波段各种二维纳米材料可饱和吸收体锁模光纤激光器性能总结

    2D materialFabrication methodLaser typeλ/nm Pulse width/fsRepetition rate/MHzSpectral width /nmRef.
    GrapheneCVDTm19402606.469.4[78]
    GrapheneCVDTm1876603416.6[79]
    GrapheneCVDTm194520558.8727.5[68]
    GrapheneHo206019020.9853.6[80]
    TIs-Bi2Te3OpticallyTm/Ho1909126021.53.6[81]
    TIs-Bi2Te3METm/Ho193579527.95.6[27]
    TMDs-WSe2CVDTm1864116011.363.19[61]
    TMDs-MoTe2CVDTm193095214.354.45[60]
    TMDs-MoSe2LPETm/Ho191292018.214.62[82]
    BPMETm191073936.85.8[40]
    BPLPETm188613920.9555.6[83]
    Table 3.

    Output Performance Comparison of reported thulium-doped and holmium-doped fiber lasers mode-locked with nanomaterial SAs

    基于二维纳米材料可饱和吸收体掺铥/钬超快锁模光纤激光器性能对比

    Qian Zhang, Xin-Xin Jin, Meng Zhang, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser[J]. Acta Physica Sinica, 2020, 69(18): 188101-1
    Download Citation