• Acta Geographica Sinica
  • Vol. 75, Issue 5, 989 (2020)
Shuangshuang LI*, Chengbo WANG, Junping YAN, and Xianfeng LIU
Author Affiliations
  • School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
  • show less
    DOI: 10.11821/dlxb202005008 Cite this Article
    Shuangshuang LI, Chengbo WANG, Junping YAN, Xianfeng LIU. Variability of the event-based extreme precipitation in the south and north Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989 Copy Citation Text show less
    References

    [1] Lenderink G, Fowler H J. Hydroclimate: Understanding rainfall extremes[J]. Nature Climate Change, 7, 391-392(2017).

    [2] Utsumi N, Seto S, Kanae S et al. Does higher surface temperature intensify extreme precipitation?[J]. Geophysical Research Letters, 38, 239-255(2011).

    [3] Lenderink G, Meijgaard E V. Increase in hourly precipitation extremes beyond expectations from temperature changes[J]. Nature Geoscience, 1, 511-514(2008).

    [4] Kadari A, Mekala S R, Wagner N et al. Human contribution to more-intense precipitation extremes[J]. Nature, 470, 378-381(2011).

    [5] Prein A F, Rasmussen R M, Ikeda K et al. The future intensification of hourly precipitation extremes[J]. Nature Climate Change, 7, 48-52(2017).

    [6] Ban N, Schmidli J, Schär C. Heavy precipitation in a changing climate: Does short‐term summer precipitation increase faster?[J]. Geophysical Research Letters, 42, 1165-1172(2015).

    [9] Li Chunlin, Liu Miao, Hu Yuanman et al. Effects of urbanization on direct runoff characteristics in urban functional zones[J]. Science of the Total Environment, 643, 301-311(2018).

    [10] Rosenzweig C, Solecki W. Action pathways for transforming cities[J]. Nature Climate Change, 8, 756-759(2018).

    [11] Bai X M, Dawson R J, Ürge-Vorsatz D et al. Six research priorities for cities and climate change[J]. Nature, 555, 23-25(2018).

    [21] White R H, Battisti D S, Skok G. Tracking precipitation events in time and space in gridded observational data[J]. Geophysical Research Letters, 44, 8637-8646(2017).

    [22] Wang G, Wang D, Trenberth K E et al. The peak structure and future changes of the relationships between extreme precipitation and temperature[J]. Nature Climate Change, 7, 268-274(2017).

    [23] Ali H, Mishra V. Increase in subdaily precipitation extremes in India under 1.5 and 2.0 °C warming worlds[J]. Geophysical Research Letters, 45, 6972-6982(2018).

    [24] Fischer E M, Knutti R. Observed heavy precipitation increase confirms theory and early models[J]. Nature Climate Change, 6, 986-991(2016).

    [25] Zhang X, Zwiers F W, Li G et al. Complexity in estimating past and future extreme short-duration rainfall[J]. Nature Geoscience, 10, 255-259(2017).

    [26] Lu E, Zhao W, Gong L et al. Determining starting time and duration of extreme precipitation events based on intensity[J]. Climate Research, 63, 31-41(2015).

    [27] Kendon E J, Roberts N M, Fowler H J et al. Heavier summer downpours with climate change revealed by weather forecast resolution model[J]. Nature Climate Change, 4, 570-576(2014).

    [28] Dwyer J G, O'Gorman P A. Changing duration and spatial extent of midlatitude precipitation extremes across different climates[J]. Geophysical Research Letters, 44, 5863-5871(2017).

    [29] Wu X, Guo S, Yin J et al. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels[J]. Journal of Hydrology, 562, 305-317(2018).

    [34] Sen P K. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the American Statistical Association, 63, 1379-1389(1968).

    [35] Hutchinson M F, McKenney D W, Lawrence K et al. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003[J]. Journal of Applied Meteorology and Climatology, 48, 725-741(2009).

    [36] Hutchinson M F. ANUSPLIN Version 4.3 User Guide. Canberra: The Australia National University,[J]. Center for Resource and Environment Studies(2004).

    [40] Mitchell D, James R, Forster P M et al. Realizing the impacts of a 1.5 °C warmer world[J]. Nature Climate Change, 6, 735-737(2016).

    [41] Chen H P, Sun J Q. Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming[J]. Environmental Research Letters, 14, 64011-64020(2019).

    [42] Zhang W X, Zhou T J, Zou L W et al. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions[J]. Nature Communications, 9, 3153-3161(2018).

    [43] Li W, Jiang Z H, Zhang X B et al. Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels[J]. Science Bulletin, 63, 228-234(2018).

    [44] Li J, Wang B. Predictability of summer extreme precipitation days over eastern China[J]. Climate Dynamics, 51, 4543-4554(2018).

    [50] Zscheischler J, Westra S, Hurk B J J M et al. Future climate risk from compound events[J]. Nature Climate Change, 8, 469-477(2018).

    [53] Chuang J S, Rivoire O, Leibler S. Simpson's paradox in a synthetic microbial system[J]. Science, 323, 272-275(2009).

    Shuangshuang LI, Chengbo WANG, Junping YAN, Xianfeng LIU. Variability of the event-based extreme precipitation in the south and north Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989
    Download Citation