• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 1, 332 (2022)
WANG Gang1, WEI Xiaohong1, ZHU Jianfeng1, CHAI Yumei1, ZHANG Biao1, LUO Hongjie1、2, and WANG Fen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Gang, WEI Xiaohong, ZHU Jianfeng, CHAI Yumei, ZHANG Biao, LUO Hongjie, WANG Fen. Effect of IBTES-TiO2@SiO2 Composite Sol on Hydrophobic Properties of Sandstone Cultural Relics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 332 Copy Citation Text show less
    References

    [5] DOEHNE E, PRICE C A. Stone conservation: an overview of current research[J]. Journal of the American Institute for Conservation, 1996, 37(2): 223.

    [6] RUFFOLO S A, LA RUSSA M F. Nanostructured coatings for stone protection: an overview[J]. Frontiers in Materials, 2019, 6(2): 00147.

    [7] AZADI N, PARSIMEHR H, ERSHAD-LANGROUDI A. Cultural heritage protection via hybrid nanocomposite coating[J]. Plastics, Rubber and Composites, 2020, 49(9): 414-424.

    [9] FACIO D S, MOSQUERA M J. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7517-7526.

    [14] ZHANG C L, YU J Y, WANG T, et al. Evaluation of ultraviolet aging resistance of bitumen modified with isobutyltriethoxysilane surface organic grafted LDH[J]. Construction and Building Materials, 2020, 241: 118016.

    [15] XU S Q, MA Q L, WANG J L. Combined effect of isobutyltriethoxysilane and silica fume on the performance of natural hydraulic lime-based mortars[J]. Construction and Building Materials, 2018, 162: 181-191.

    [16] LIU G Y, XIA H Y, ZHANG W S, et al. Photocatalytic superamphiphobic coatings and the effect of surface microstructures on superamphiphobicity[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12509-12520.

    [18] KIM J H, HOSSAIN S M, KANG H J, et al. Hydrophilic/hydrophobic silane grafting on TiO2 nanoparticles: photocatalytic paint for atmospheric cleaning[J]. Catalysts, 2021, 11(2): 193.

    [19] KAPRIDAKI C, PINHO L, MOSQUERA M J, et al. Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings[J]. Applied Catalysis B: Environmental, 2014, 156/157: 416-427.

    [20] MILIANI C, VELO-SIMPSON M L, SCHERER G W. Particle-modified consolidants: a study on the effect of particles on sol-gel properties and consolidation effectiveness[J]. Journal of Cultural Heritage, 2007, 8(1): 1-6.

    [21] LI L X, LI B C, DONG J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. Journal of Materials Chemistry A, 2016, 4(36): 13677-13725.

    [22] WANG Y C, PENG S, SHI X M, et al. A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics[J]. Applied Surface Science, 2020, 505: 144621.

    [23] KIM S K, WANG X Y, ANDO S, et al. Highly transparent triethoxysilane-terminated copolyimide and its SiO2 composite with enhanced thermal stability and reduced thermal expansion[J]. European Polymer Journal, 2015, 64: 206-214.

    [24] CARUSO F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.

    WANG Gang, WEI Xiaohong, ZHU Jianfeng, CHAI Yumei, ZHANG Biao, LUO Hongjie, WANG Fen. Effect of IBTES-TiO2@SiO2 Composite Sol on Hydrophobic Properties of Sandstone Cultural Relics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 332
    Download Citation