• Chinese Journal of Lasers
  • Vol. 48, Issue 7, 0701006 (2021)
Junzhi Chu1、3, Ke Huang2、**, Kunpeng Luan2, Shu Hu1, Feng Zhu2, Chao Huang2, Gaopeng Li2, Jinbo Liu1, Jingwei Guo1, and Dong Liu1、*
Author Affiliations
  • 1Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
  • 2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.0701006 Cite this Article Set citation alerts
    Junzhi Chu, Ke Huang, Kunpeng Luan, Shu Hu, Feng Zhu, Chao Huang, Gaopeng Li, Jinbo Liu, Jingwei Guo, Dong Liu. Concentration Measuring of Metastable Kr via Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2021, 48(7): 0701006 Copy Citation Text show less
    References

    [1] Beach R J, Krupke W F, Keith Kanz V et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling[J]. Journal of the Optical Society of America B, 21, 2151-2163(2004).

    [2] Li Y, Hua W, Li L et al. Experimental research of a chain of diode pumped rubidium amplifiers[J]. Optics Express, 23, 25906-25911(2015).

    [3] Endo M. Pulsed output generation in a diode-pumped cesium vapor laser using the cavity dumping technique[J]. Optics Letters, 44, 1312-1314(2019). http://www.researchgate.net/publication/331531769_Pulsed_output_generation_in_a_diode-pumped_cesium_vapor_laser_using_the_cavity_dumping_technique

    [4] Xu C, Tan R Q, Li Z Y et al. 2.8 W linearly polarized output of rubidium vapor laser with diode pumping[J]. Chinese Journal of Lasers, 40, 0102009(2013).

    [5] Tam A, Moe G, Happer W. Particle formation by resonant laser light in alkali-metal vapor[J]. Physical Review Letters, 35, 1630-1633(1975). http://adsabs.harvard.edu/abs/1975PhRvL..35.1630T

    [6] Tanaka T, Mitsui T, Sugiyama K et al. Shapes of laser-produced CsH particles[J]. Physical Review Letters, 63, 1390-1392(1989). http://prola.aps.org/abstract/PRL/v63/i13/p1390_1

    [7] Han J D, Heaven M C. Gain and lasing of optically pumped metastable rare gas atoms[J]. Proceedings of SPIE, 8547, 85470Z(2012).

    [8] Han J D, Glebov L, Venus G et al. Demonstration of a diode-pumped metastable Ar laser[J]. Optics Letters, 38, 5458-5461(2013).

    [9] Rawlins W T, Galbally-Kinney K L, Davis S J et al. Optically pumped microplasma rare gas laser[J]. Optics Express, 23, 4804-4813(2015).

    [10] Han J, Heaven M C, Moran P J et al. Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W[J]. Optics Letters, 42, 4627-4630(2017).

    [11] Yu G Q, Yang Z N, Lu Q S. Research development of diode pumped metastable rare gas laser[J]. Laser & Optoelectronics Progress, 52, 010001(2015).

    [12] Sanderson C R, Ballmann C W, Han J D et al. Demonstration of a quasi-CW diode-pumped metastable xenon laser[J]. Optics Express, 27, 36011-36021(2019).

    [13] Yang Z, Yu G, Wang H et al. Modeling of diode pumped metastable rare gas lasers[J]. Optics Express, 23, 13823-13832(2015). http://europepmc.org/abstract/MED/26072754

    [14] Sun P F, Zuo D L, Mikheyev P A et al. Time-dependent simulations of a CW pumped, pulsed DC discharge Ar metastable laser system[J]. Optics Express, 27, 22289-22301(2019).

    [15] Huang C, Huang K, Yi A P et al. 200 W mid-infrared HF chemical laser with repetition rate[J]. Chinese Journal of Lasers, 46, 0801005(2019).

    [16] Huang C, Huang K, Yi A P et al. A mid-infrared pulsed HF chemical laser with 100 Hz repetition rate[J]. Chinese Journal of Lasers, 46, 0201002(2019).

    [17] Zhou B K, Gao Y Z, Chen Z R et al[M]. Principles of lasers(2000).

    [18] Chang R S F, Horiguchi H, Setser D W. Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 55p) and Kr(4p 55p') states[J]. The Journal of Chemical Physics, 73, 778-790(1980). http://scitation.aip.org/content/aip/journal/jcp/73/2/10.1063/1.440185

    [19] Armstrong B H. Spectrum line profiles: the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 7, 61-88(1967). http://www.sciencedirect.com/science/article/pii/002240736790057X

    [20] Roston G D, Obaid F S. Exact analytical formula for Voigt spectral line profile[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 94, 255-263(2005). http://www.sciencedirect.com/science/article/pii/S0022407305001019

    [21] Abrarov S M, Quine B M. Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation[J]. Applied Mathematics and Computation, 218, 1894-1902(2011). http://www.sciencedirect.com/science/article/pii/S0096300311009179

    [22] Gautschi W. Efficient computation of the complex error function[J]. SIAM Journal on Numerical Analysis, 7, 187-198(1970).

    [23] Zaghloul M R, Ali A N. Algorithm 916: computing the Faddeyeva and Voigt functions[J]. ACM Transactions on Mathematical Software, 38, 15(2012).

    [24] Koechner W. Thermo-optic effects and heat removal[M]. //Solid-state laser engineering. Springer series in optical sciences, 1, 406-468(1999).

    [25] Manoharan R, Boyson T K. O'byrne S. Time-resolved temperature and number density measurements in a repetitively pulsed nanosecond-duration discharge[J]. Physics of Plasmas, 23, 123527(2016). http://adsabs.harvard.edu/abs/2016PhPl...23l3527M

    [26] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 41, 613-627(1995).

    [27] Jian R Y[M]. Functional analysis for applied mathematics(2013).

    Junzhi Chu, Ke Huang, Kunpeng Luan, Shu Hu, Feng Zhu, Chao Huang, Gaopeng Li, Jinbo Liu, Jingwei Guo, Dong Liu. Concentration Measuring of Metastable Kr via Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2021, 48(7): 0701006
    Download Citation