[1] J. D. Lindl. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive(1998).
[2] J. Nuckolls, A. Thiessen, L. Wood, G. Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).
[3] D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, O. A. Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).
[4] I. M. Edward. Ignition on the National ignition facility: A path towards inertial fusion energy. Nucl. Fusion, 49, 104022(2009).
[5] W. L. Kruer. The Physics of Laser Plasma Interactions(1988).
[6] P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, J. D. Lindl et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).
[7] B. B. Afeyan, R. K. Kirkwood, W. L. Kruer, B. J. MacGowan, J. D. Moody et al. Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma. Phys. Rev. Lett., 76, 2065(1996).
[8] B. B. Afeyan, R. K. Kirkwood, W. L. Kruer, S. C. Wilks. Energy transfer between crossing laser beams. Phys. Plasmas, 3, 382(1996).
[9] L. Divol, P. Michel, C. A. Thomas, S. Weber, E. A. Williams et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).
[10] D. A. Callahan, L. Divol, P. Michel, C. A. Thomas, E. A. Williams et al. Energy transfer between laser beams crossing in ignition hohlraums. Phys. Plasmas, 16, 042702(2009).
[11] E. M. Campbell, S. M. Lane, W. C. Mead, L. J. Suter, F. Ze et al. Compression measurements in ablatively driven inertial confinement fusion. Comments Plasma Phys. Controlled Fusion, 10, 33(1986).
[12] W. L. Kruer. Intense laser plasma interactions: From Janus to Nova. Phys. Fluids B, 3, 2356(1991).
[13] J. L. Emmett, W. F. Krupke, J. B. Trenholme. Future development of high-power solid-state laser systems. Sov. J. Quantum Electron., 13, 1(1983).
[14] J. T. Hunt, D. R. Speck. Present and future performance of the Nova laser system. Opt. Eng., 28, 284461(1989).
[15] J. Boles, D. Brown, J. Bunkenberg, J. Eastman, J. Hoose et al. The omega high-power phosphate-glass system: Design and performance. IEEE J. Quantum Electron., 17, 1620(1981).
[16] R. J. Hutchison, S. D. Jacobs, L. D. Lund, R. McCrory, J. Soures et al. OMEGA: A Short-Wavelength Laser for Fusion Experiments(1983).
[17] T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer et al. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495(1997).
[18] R. Al-Ayat, R. N. Boyd, C. J. Keane, E. I. Moses, B. A. Remington. The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas, 16, 041006(2009).
[19] D. Babonneau, C. Bowen, F. Chaland, C. Cherfils, P. A. Holstein et al. Target physics for the megajoule laser (LMJ). Nucl. Fusion, 44, S177(2004).
[20] J. L. Bourgade, C. Cavailler, N. Fleurot. The laser mégajoule (LMJ) Project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des., 74, 147(2005).
[21] S. Chen, X. Deng, D. Fan, Z. Lin, S. Wang et al. SG-II laser elementary research and precision SG-II program. Fusion Eng. Des., 44, 61(1999).
[22] D. Fan, F. Jing, Z. Sui, X. F. Wei, X. M. Zhang, W. G. Zheng, K. I. Ueda, J. Lee et al. Preliminary experimental results of shenguang III technical integration experiment line. High-Power Lasers and Applications III, 6(2004).
[23] H. Azechi, F. Jing, Z. Sui, X. F. Wei, X. M. Zhang, W. G. Zheng, B. Hammel, J. C. Gauthier et al. Status of the SG-III solid-state laser facility, 032009(2008).
[24] L. J. Atherton, D. A. Callahan, E. L. Dewald, S. Dixit, N. B. Meezan et al. National ignition Campaign Hohlraum energetics. Phys. Plasmas, 17, 056304(2010).
[25] S. N. Dixit, M. D. Feit, M. D. Perry, H. T. Powell. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. Opt. Lett., 21, 1715(1996).
[26] R. L. Berger, A. B. Langdon, E. Lefebvre, B. J. MacGowan, J. E. Rothenberg et al. Reduction of laser self-focusing in plasma by polarization smoothing. Phys. Plasmas, 5, 2701(1998).
[27] R. S. Craxton, T. Kessler, S. Letzring, R. W. Short, S. Skupsky et al. Improved laser-beam uniformity using the angular-dispersion of frequency-modulated light. J. Appl. Phys., 66, 3456(1989).
[28] R. L. Berger, L. Divol, B. J. MacGowan, J. D. Moody, J. E. Rothenberg et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett., 86, 2810(2001).
[29] R. L. Berger, L. M. Divol, S. H. Glenzer, R. K. Kirkwood, B. J. MacGowan et al. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas, 8, 1692(2001).
[30] R. L. Berger, L. Divol, D. H. Froula, R. A. London, N. B. Meezan et al. Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas. Phys. Rev. Lett., 101, 115002(2008).
[31] R. L. Berger, L. Divol, T. Doppner, D. H. Froula, R. A. London et al. Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. Phys. Rev. Lett., 103, 045006(2009).
[32] R. L. Berger, L. Divol, T. Doppner, D. H. Froula, R. A. London et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility. Phys. Plasmas, 17, 056302(2010).
[33] R. L. Berger, L. Divol, M. Dorr, D. H. Froula, S. H. Glenzer et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716(2007).
[34] B. B. Afeyan, J. A. Cobble, J. C. Fernandez, D. S. Montgomery, M. D. Wilke et al. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas. Phys. Plasmas, 5, 1973(1998).
[35] L. F. Berzak Hopkins, L. Divol, S. Le Pape, A. J. Mackinnon, N. B. Meezan et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett., 17, 175001(2015).
[36] P. Davis, D. H. Froula, A. N. James, B. B. Pollock, J. S. Ross et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering. Phys. Rev. Lett., 98, 135001(2007).
[37] B. J. Albright, D. H. Barnak, P. Y. Chang, J. R. Davies, D. S. Montgomery et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas, 22, 010703(2015).
[38] Y. Ding, T. Gong, Z. Li, D. Yang, J. Zheng et al. Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields. Phys. Plasmas, 22, 092706(2015).
[39] R. L. Berger, L. Divol, D. H. Froula, R. A. London, P. Neumayer et al. Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas. Phys. Rev. Lett., 100, 105001(2008).
[40] R. L. Berger, D. Callahan, L. Divol, D. H. Froula, P. Neumayer et al. Energetics of multiple-ion species hohlraum plasmas. Phys. Plasmas, 15, 056307(2008).
[41] H. Azechi, D. H. Froula, S. R. D. H. Goldman, J. L. Kline, D. S. Montgomery, H. A. Rose, B. Hammel, J. C. Gauthier et al. Mitigation of stimulated Raman scattering in Hohlraum plasmas(2008).
[42] H. A. Baldis, B. S. Bauer, C. Labaune, G. Laval, V. T. Tikhonchuk. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma. Phys. Plasmas, 5, 234(1998).
[43] S. Depierreux, J. Fuchs, C. Labaune, D. Pesme, V. T. Tikhonchuk et al. Langmuir decay instability cascade in laser-plasma experiments. Phys. Rev. Lett., 89, 045001(2002).
[44] H. C. Bandulet, S. Depierreux, C. Labaune, K. Lewis. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability. Phys. Rev. Lett., 93, 035002(2004).
[45] L. Divol, S. H. Glenzer, J. Knight, C. Niemann, E. A. Williams et al. Observation of the parametric two-ion decay instability with Thomson scattering. Phys. Rev. Lett., 93, 045004(2004).
[46] C. Clayton, C. Joshi, D. Umstadter, R. Williams. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering. Phys. Rev. Lett., 59, 292(1987).
[47] C. Joshi, W. B. Mori, D. Umstadter. The coupling of stimulated Raman and Brillouin scattering in a plasma. Phys. Fluids B, 1, 183(1989).
[48] B. I. Cohen, A. B. Langdon, B. F. Lasinski, E. A. Williams. Resonantly excited nonlinear ion waves. Phys. Plasmas, 4, 956(1997).
[49] H. A. Baldis, R. L. Berger, B. I. Cohen, K. G. Estabrook, E. A. Williams et al. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments. Phys. Plasmas, 8, 571(2001).
[50] D. F. DuBois, A. V. Maximov, H. A. Rose, W. Rozmus, V. T. Tikhonchuk et al. Effects of plasma long-wavelength hydrodynamical fluctuations on stimulated Brillouin scattering. Phys. Plasmas, 3, 1689(1996).
[51] M. Casanova, F. Detering, S. Huller, P. E. Masson-Laborde, D. Pesme et al. Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering. Phys. Plasmas, 13, 022703(2006).
[52] D. S. Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).
[53] G. J. Morales, T. M. Oneil. Nonlinear frequency-shift of an electron-plasma wave. Phys. Rev. Lett., 28, 417(1972).
[54] R. E. Giacone, H. X. Vu. Nonlinear kinetic simulations of stimulated Brillouin scattering. Phys. Plasmas, 5, 1455(1998).
[55] L. Divol, D. H. Froula, S. H. Glenzer. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering. Phys. Rev. Lett., 88, 105003(2002).
[56] R. L. Berger, B. I. Cohen, L. Divol, A. B. Langdon, E. A. Williams et al. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Phys. Plasmas, 10, 1822(2003).
[57] A. V. Maximov, J. F. Myatt, W. Seka, R. W. Short, J. Zhang et al. Multiple-beam laser-plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).
[58] L. Divol, P. Michel, J. E. Ralph, J. S. Ross, D. Turnbull et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments. Phys. Rev. Lett., 114, 125001(2015).
[59] P. E. Masson-Laborde, M. C. Monteil, C. Neuville, D. Pesme, V. Tassin et al. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves. Phys. Rev. Lett., 116, 235002(2016).
[60] D. E. Hinkel, A. B. Langdon, M. D. Rosen, C. H. Still, E. A. Williams et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility. Phys. Plasmas, 18, 056312(2011).
[61] E. L. Dewald, L. Divol, M. Hohenberger, P. Michel, J. L. Milovich et al. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett., 115, 055003(2015).
[62] R. E. Bahr, S. P. Regan, W. Seka, C. Stoeckl, B. Yaakobi et al. Multibeam effects on fast-electron generation from two-plasmon-decay instability. Phys. Rev. Lett., 90, 235002(2003).
[63] E. L. Dewald, F. Hartemann, M. Hohenberger, P. Michel, J. Milovich et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums. Phys. Rev. Lett., 116, 075003(2016).
[64] X. H. Jiang, Z. C. Li, Z. B. Wang, D. Yang, J. Zheng et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target. Phys. Plasmas, 19, 062703(2012).
[65] X. H. Jiang, Z. C. Li, Z. B. Wang, D. Yang, J. Zheng et al. Methods of generation and detailed characterization of millimeter-scale plasmas using a gasbag target. Chin. Phys. Lett., 28, 125202(2011).
[66] X. H. Jiang, Z. B. Wang, C. X. Yu, B. Zhao, J. Zheng et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer. Phys. Plasmas, 12, 082703(2005).
[67] Y. K. Ding, X. H. Jiang, Z. C. Li, Q. A. Yin, J. A. Zheng et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype. Chin. Phys. B, 19, 125202(2010).
[68] L. Hao, X. Y. Hu, Z. J. Liu, D. Yang, Y. Q. Zhao et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys. Plasmas, 21, 072705(2014).
[69] T. Gong, G.-y. Hu, Z. Li, B. Zhao, J. Zheng. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach. Phys. Plasmas, 20, 092702(2013).
[70] J.-F. Gu, D.-G. Kang, P. Song, H. Yong, C.-L. Zhai et al. Numerical simulation of 2-D radiation-drive ignition implosion process. Commun. Theor. Phys., 59, 737(2013).
[71] L. Hao, X. Li, Z. Li, Y. Liu, D. Yang et al. Laser plasma instability studies in the context of six-side laser-driven indirect designs on SG-III laser facility. Phys. Plasmas.