• Matter and Radiation at Extremes
  • Vol. 4, Issue 5, 055202 (2019)
Tao Gong1,*, Liang Hao2, Zhichao Li1, Dong Yang1..., Sanwei Li1, Xin Li2, Liang Guo1, Shiyang Zou2, Yaoyuan Liu3, Xiaohua Jiang1, Xiaoshi Peng1, Tao Xu1, Xiangming Liu1, Yulong Li1, Chunyang Zheng2, Hongbo Cai2, Zhanjun Liu2, Jian Zheng3, Zhebin Wang1, Qi Li1, Ping Li1, Rui Zhang1, Ying Zhang1, Fang Wang1, Deen Wang1, Feng Wang1, Shenye Liu1, Jiamin Yang1, Shaoen Jiang1, Baohan Zhang1 and Yongkun Ding2|Show fewer author(s)
Author Affiliations
  • 1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, People’s Republic of China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China
  • 3CAS Key Laboratory of Geospace Environment and Department of Engineering and Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
  • show less
    DOI: 10.1063/1.5092446 Cite this Article
    Tao Gong, Liang Hao, Zhichao Li, Dong Yang, Sanwei Li, Xin Li, Liang Guo, Shiyang Zou, Yaoyuan Liu, Xiaohua Jiang, Xiaoshi Peng, Tao Xu, Xiangming Liu, Yulong Li, Chunyang Zheng, Hongbo Cai, Zhanjun Liu, Jian Zheng, Zhebin Wang, Qi Li, Ping Li, Rui Zhang, Ying Zhang, Fang Wang, Deen Wang, Feng Wang, Shenye Liu, Jiamin Yang, Shaoen Jiang, Baohan Zhang, Yongkun Ding. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4(5): 055202 Copy Citation Text show less
    References

    [1] J. D. Lindl. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive(1998).

    [2] J. Nuckolls, A. Thiessen, L. Wood, G. Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).

    [3] D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, O. A. Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [4] I. M. Edward. Ignition on the National ignition facility: A path towards inertial fusion energy. Nucl. Fusion, 49, 104022(2009).

    [5] W. L. Kruer. The Physics of Laser Plasma Interactions(1988).

    [6] P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, J. D. Lindl et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [7] B. B. Afeyan, R. K. Kirkwood, W. L. Kruer, B. J. MacGowan, J. D. Moody et al. Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma. Phys. Rev. Lett., 76, 2065(1996).

    [8] B. B. Afeyan, R. K. Kirkwood, W. L. Kruer, S. C. Wilks. Energy transfer between crossing laser beams. Phys. Plasmas, 3, 382(1996).

    [9] L. Divol, P. Michel, C. A. Thomas, S. Weber, E. A. Williams et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).

    [10] D. A. Callahan, L. Divol, P. Michel, C. A. Thomas, E. A. Williams et al. Energy transfer between laser beams crossing in ignition hohlraums. Phys. Plasmas, 16, 042702(2009).

    [11] E. M. Campbell, S. M. Lane, W. C. Mead, L. J. Suter, F. Ze et al. Compression measurements in ablatively driven inertial confinement fusion. Comments Plasma Phys. Controlled Fusion, 10, 33(1986).

    [12] W. L. Kruer. Intense laser plasma interactions: From Janus to Nova. Phys. Fluids B, 3, 2356(1991).

    [13] J. L. Emmett, W. F. Krupke, J. B. Trenholme. Future development of high-power solid-state laser systems. Sov. J. Quantum Electron., 13, 1(1983).

    [14] J. T. Hunt, D. R. Speck. Present and future performance of the Nova laser system. Opt. Eng., 28, 284461(1989).

    [15] J. Boles, D. Brown, J. Bunkenberg, J. Eastman, J. Hoose et al. The omega high-power phosphate-glass system: Design and performance. IEEE J. Quantum Electron., 17, 1620(1981).

    [16] R. J. Hutchison, S. D. Jacobs, L. D. Lund, R. McCrory, J. Soures et al. OMEGA: A Short-Wavelength Laser for Fusion Experiments(1983).

    [17] T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer et al. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495(1997).

    [18] R. Al-Ayat, R. N. Boyd, C. J. Keane, E. I. Moses, B. A. Remington. The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas, 16, 041006(2009).

    [19] D. Babonneau, C. Bowen, F. Chaland, C. Cherfils, P. A. Holstein et al. Target physics for the megajoule laser (LMJ). Nucl. Fusion, 44, S177(2004).

    [20] J. L. Bourgade, C. Cavailler, N. Fleurot. The laser mégajoule (LMJ) Project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des., 74, 147(2005).

    [21] S. Chen, X. Deng, D. Fan, Z. Lin, S. Wang et al. SG-II laser elementary research and precision SG-II program. Fusion Eng. Des., 44, 61(1999).

    [22] D. Fan, F. Jing, Z. Sui, X. F. Wei, X. M. Zhang, W. G. Zheng, K. I. Ueda, J. Lee et al. Preliminary experimental results of shenguang III technical integration experiment line. High-Power Lasers and Applications III, 6(2004).

    [23] H. Azechi, F. Jing, Z. Sui, X. F. Wei, X. M. Zhang, W. G. Zheng, B. Hammel, J. C. Gauthier et al. Status of the SG-III solid-state laser facility, 032009(2008).

    [24] L. J. Atherton, D. A. Callahan, E. L. Dewald, S. Dixit, N. B. Meezan et al. National ignition Campaign Hohlraum energetics. Phys. Plasmas, 17, 056304(2010).

    [25] S. N. Dixit, M. D. Feit, M. D. Perry, H. T. Powell. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. Opt. Lett., 21, 1715(1996).

    [26] R. L. Berger, A. B. Langdon, E. Lefebvre, B. J. MacGowan, J. E. Rothenberg et al. Reduction of laser self-focusing in plasma by polarization smoothing. Phys. Plasmas, 5, 2701(1998).

    [27] R. S. Craxton, T. Kessler, S. Letzring, R. W. Short, S. Skupsky et al. Improved laser-beam uniformity using the angular-dispersion of frequency-modulated light. J. Appl. Phys., 66, 3456(1989).

    [28] R. L. Berger, L. Divol, B. J. MacGowan, J. D. Moody, J. E. Rothenberg et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett., 86, 2810(2001).

    [29] R. L. Berger, L. M. Divol, S. H. Glenzer, R. K. Kirkwood, B. J. MacGowan et al. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas, 8, 1692(2001).

    [30] R. L. Berger, L. Divol, D. H. Froula, R. A. London, N. B. Meezan et al. Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas. Phys. Rev. Lett., 101, 115002(2008).

    [31] R. L. Berger, L. Divol, T. Doppner, D. H. Froula, R. A. London et al. Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. Phys. Rev. Lett., 103, 045006(2009).

    [32] R. L. Berger, L. Divol, T. Doppner, D. H. Froula, R. A. London et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility. Phys. Plasmas, 17, 056302(2010).

    [33] R. L. Berger, L. Divol, M. Dorr, D. H. Froula, S. H. Glenzer et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716(2007).

    [34] B. B. Afeyan, J. A. Cobble, J. C. Fernandez, D. S. Montgomery, M. D. Wilke et al. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas. Phys. Plasmas, 5, 1973(1998).

    [35] L. F. Berzak Hopkins, L. Divol, S. Le Pape, A. J. Mackinnon, N. B. Meezan et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett., 17, 175001(2015).

    [36] P. Davis, D. H. Froula, A. N. James, B. B. Pollock, J. S. Ross et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering. Phys. Rev. Lett., 98, 135001(2007).

    [37] B. J. Albright, D. H. Barnak, P. Y. Chang, J. R. Davies, D. S. Montgomery et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas, 22, 010703(2015).

    [38] Y. Ding, T. Gong, Z. Li, D. Yang, J. Zheng et al. Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields. Phys. Plasmas, 22, 092706(2015).

    [39] R. L. Berger, L. Divol, D. H. Froula, R. A. London, P. Neumayer et al. Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas. Phys. Rev. Lett., 100, 105001(2008).

    [40] R. L. Berger, D. Callahan, L. Divol, D. H. Froula, P. Neumayer et al. Energetics of multiple-ion species hohlraum plasmas. Phys. Plasmas, 15, 056307(2008).

    [41] H. Azechi, D. H. Froula, S. R. D. H. Goldman, J. L. Kline, D. S. Montgomery, H. A. Rose, B. Hammel, J. C. Gauthier et al. Mitigation of stimulated Raman scattering in Hohlraum plasmas(2008).

    [42] H. A. Baldis, B. S. Bauer, C. Labaune, G. Laval, V. T. Tikhonchuk. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma. Phys. Plasmas, 5, 234(1998).

    [43] S. Depierreux, J. Fuchs, C. Labaune, D. Pesme, V. T. Tikhonchuk et al. Langmuir decay instability cascade in laser-plasma experiments. Phys. Rev. Lett., 89, 045001(2002).

    [44] H. C. Bandulet, S. Depierreux, C. Labaune, K. Lewis. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability. Phys. Rev. Lett., 93, 035002(2004).

    [45] L. Divol, S. H. Glenzer, J. Knight, C. Niemann, E. A. Williams et al. Observation of the parametric two-ion decay instability with Thomson scattering. Phys. Rev. Lett., 93, 045004(2004).

    [46] C. Clayton, C. Joshi, D. Umstadter, R. Williams. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering. Phys. Rev. Lett., 59, 292(1987).

    [47] C. Joshi, W. B. Mori, D. Umstadter. The coupling of stimulated Raman and Brillouin scattering in a plasma. Phys. Fluids B, 1, 183(1989).

    [48] B. I. Cohen, A. B. Langdon, B. F. Lasinski, E. A. Williams. Resonantly excited nonlinear ion waves. Phys. Plasmas, 4, 956(1997).

    [49] H. A. Baldis, R. L. Berger, B. I. Cohen, K. G. Estabrook, E. A. Williams et al. Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments. Phys. Plasmas, 8, 571(2001).

    [50] D. F. DuBois, A. V. Maximov, H. A. Rose, W. Rozmus, V. T. Tikhonchuk et al. Effects of plasma long-wavelength hydrodynamical fluctuations on stimulated Brillouin scattering. Phys. Plasmas, 3, 1689(1996).

    [51] M. Casanova, F. Detering, S. Huller, P. E. Masson-Laborde, D. Pesme et al. Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering. Phys. Plasmas, 13, 022703(2006).

    [52] D. S. Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).

    [53] G. J. Morales, T. M. Oneil. Nonlinear frequency-shift of an electron-plasma wave. Phys. Rev. Lett., 28, 417(1972).

    [54] R. E. Giacone, H. X. Vu. Nonlinear kinetic simulations of stimulated Brillouin scattering. Phys. Plasmas, 5, 1455(1998).

    [55] L. Divol, D. H. Froula, S. H. Glenzer. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering. Phys. Rev. Lett., 88, 105003(2002).

    [56] R. L. Berger, B. I. Cohen, L. Divol, A. B. Langdon, E. A. Williams et al. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Phys. Plasmas, 10, 1822(2003).

    [57] A. V. Maximov, J. F. Myatt, W. Seka, R. W. Short, J. Zhang et al. Multiple-beam laser-plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).

    [58] L. Divol, P. Michel, J. E. Ralph, J. S. Ross, D. Turnbull et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments. Phys. Rev. Lett., 114, 125001(2015).

    [59] P. E. Masson-Laborde, M. C. Monteil, C. Neuville, D. Pesme, V. Tassin et al. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves. Phys. Rev. Lett., 116, 235002(2016).

    [60] D. E. Hinkel, A. B. Langdon, M. D. Rosen, C. H. Still, E. A. Williams et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility. Phys. Plasmas, 18, 056312(2011).

    [61] E. L. Dewald, L. Divol, M. Hohenberger, P. Michel, J. L. Milovich et al. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett., 115, 055003(2015).

    [62] R. E. Bahr, S. P. Regan, W. Seka, C. Stoeckl, B. Yaakobi et al. Multibeam effects on fast-electron generation from two-plasmon-decay instability. Phys. Rev. Lett., 90, 235002(2003).

    [63] E. L. Dewald, F. Hartemann, M. Hohenberger, P. Michel, J. Milovich et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums. Phys. Rev. Lett., 116, 075003(2016).

    [64] X. H. Jiang, Z. C. Li, Z. B. Wang, D. Yang, J. Zheng et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target. Phys. Plasmas, 19, 062703(2012).

    [65] X. H. Jiang, Z. C. Li, Z. B. Wang, D. Yang, J. Zheng et al. Methods of generation and detailed characterization of millimeter-scale plasmas using a gasbag target. Chin. Phys. Lett., 28, 125202(2011).

    [66] X. H. Jiang, Z. B. Wang, C. X. Yu, B. Zhao, J. Zheng et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer. Phys. Plasmas, 12, 082703(2005).

    [67] Y. K. Ding, X. H. Jiang, Z. C. Li, Q. A. Yin, J. A. Zheng et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype. Chin. Phys. B, 19, 125202(2010).

    [68] L. Hao, X. Y. Hu, Z. J. Liu, D. Yang, Y. Q. Zhao et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys. Plasmas, 21, 072705(2014).

    [69] T. Gong, G.-y. Hu, Z. Li, B. Zhao, J. Zheng. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach. Phys. Plasmas, 20, 092702(2013).

    [70] J.-F. Gu, D.-G. Kang, P. Song, H. Yong, C.-L. Zhai et al. Numerical simulation of 2-D radiation-drive ignition implosion process. Commun. Theor. Phys., 59, 737(2013).

    [71] L. Hao, X. Li, Z. Li, Y. Liu, D. Yang et al. Laser plasma instability studies in the context of six-side laser-driven indirect designs on SG-III laser facility. Phys. Plasmas.

    Tao Gong, Liang Hao, Zhichao Li, Dong Yang, Sanwei Li, Xin Li, Liang Guo, Shiyang Zou, Yaoyuan Liu, Xiaohua Jiang, Xiaoshi Peng, Tao Xu, Xiangming Liu, Yulong Li, Chunyang Zheng, Hongbo Cai, Zhanjun Liu, Jian Zheng, Zhebin Wang, Qi Li, Ping Li, Rui Zhang, Ying Zhang, Fang Wang, Deen Wang, Feng Wang, Shenye Liu, Jiamin Yang, Shaoen Jiang, Baohan Zhang, Yongkun Ding. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4(5): 055202
    Download Citation