• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 1, 322 (2024)
LEI Wanying*, ZHAO Liang, ZHOU Tong, XUE Shixiang..., WU Pan, YANG Xinxin and TAN Ziqiang|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LEI Wanying, ZHAO Liang, ZHOU Tong, XUE Shixiang, WU Pan, YANG Xinxin, TAN Ziqiang. Modification Strategy for WO3-Based Photocatalysts[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 322 Copy Citation Text show less
    References

    [1] HUANG P W, HATZELL M C. Prospects and good experimental practices for photocatalytic ammonia synthesis[J]. Nat Commun, 2022, 13(1): 7908.

    [2] SUN K, QIAN Y Y, JIANG H L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction[J]. Angew Chem Int Ed Engl, 2023, 62(15): e202217565.

    [3] JIANG L, LYU Y H, HUANG A B, et al. Mixed-phase WO3 cocatalysts on hierarchical Si-based photocathode for efficient photoelectrochemical Li extraction[J]. Angew Chem Int Ed Engl, 2023, 62(24): e202304079.

    [4] LEI Q Q, YUAN H Q, DU J H, et al. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes[J]. Nat Commun, 2023, 14(1): 1087.

    [5] YU J E, DAPPOZZE F, MARTíN-GOMEZ J, et al. Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3- based materials[J]. Appl Catal B Environ, 2021, 299: 120616.

    [6] WU Y L, QI M Y, TAN C L, et al. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites[J]. Chin J Catal, 2022, 43(7): 1851-1859.

    [7] ULLAH H, BARZGAR VISHLAGHI M, BALKAN T, et al. Scaling-up photocatalytic activity of CdS from nanorods to nanowires for the MB degradation[J]. Inorg Chem Commun, 2021, 130: 108744.

    [8] LI F Y, HOU Y P, YU Z B, et al. Oxygen deficiency introduced to Z-scheme CdS/WO3-x nanomaterials with MoS2 as the cocatalyst towards enhancing visible-light-driven hydrogen evolution[J]. Nanoscale, 2019, 11(22): 10884-10895.

    [9] LI Y S, TANG Z L, ZHANG J Y, et al. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance[J]. J Phys Chem C, 2016, 120(18): 9750-9763.

    [10] CHAI Xu, GAO Shengwang, ZHANG Yuxuan, et al. J Chin Ceram Soc, 2023, 51(4): 1049-1059.

    [11] REN K X, DONG Y M, CHEN Y G, et al. Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 637: 128208.

    [12] CAI Z Q, HUANG Y N, JI H D, et al. Type-II surface heterojunction of bismuth-rich Bi4O5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics[J]. Sep Purif Technol, 2022, 280: 119772.

    [13] JIANG Zicong, ZHANG Liuyang, YU Jiaguo. J Chin Ceram Soc, 2023, 51(1): 73-81.

    [14] ZHANG Y A, CUI T Y, ZHAO J B, et al. Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light[J]. Inorg Chem Commun, 2022, 143: 109815.

    [15] YANG Y, ZENG Z T, ZENG G M, et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production[J]. Appl Catal B Environ, 2019, 258: 117956.

    [16] ZHANG M Y, QIN J Q, RAJENDRAN S, et al. Heterostructured d-Ti3 C2/TiO2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic hydrogen production activity[J]. ChemSusChem, 2018, 11(24): 4226-4236.

    [17] HUANG J, WANG B S, HAO Z J, et al. Boosting charge separation and broadening NIR light response over defected WO3 quantum dots coupled g-C3N4 nanosheets for photocatalytic degrading antibiotics[J]. Chem Eng J, 2021, 416: 129109.

    [18] YANG Z, WANG J L. Photo-Fenton degradation of sulfamethazine using self-assembled CdS nanorods with in situ production of H2O2 at wide pH range[J]. Chem Eng J, 2022, 450: 138024.

    [19] WANG S, JIAO Y X, YIN J N, et al. Innovation synthesis of NiS quantum dots modified CdS/WO3 heterostructures as high-efficiency bifunctional photocatalysts for construction of visible light driven Z-scheme water-splitting and Cr(VI) degradation[J]. Appl Surf Sci, 2022, 602: 154226.

    [20] MAO J, LI P W, WANG J M, et al. Insights into photocatalytic inactivation mechanism of the hypertoxic site in aflatoxin B1 over clew-like WO3 decorated with CdS nanoparticles[J]. Appl Catal B Environ, 2019, 248: 477-486.

    [21] LOU Z Z, ZHU M S, YANG X G, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Appl Catal B Environ, 2018, 226: 10-15.

    [22] DONG P Y, HOU G H, XI X G, et al. WO3- based photocatalysts: Morphology control, activity enhancement and multifunctional applications[J]. Environ Sci: Nano, 2017, 4(3): 539-557.

    [23] XIONG S F, BAO S D, WANG W A, et al. Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2[J]. Appl Catal B Environ, 2022, 305: 121026.

    [24] WANG P Q, BAI Y, LUO P Y, et al. Graphene-WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catal Commun, 2013, 38: 82-85.

    [25] GUPTA S P, NISHAD H H, PATIL V B, et al. Morphology and crystal structure dependent pseudocapacitor performance of hydrated WO3 nanostructures[J]. Mater Adv, 2020, 1(7): 2492-2500.

    [26] VIGNOLO-GONZáLEZ H A, GOUDER A, LAHA S, et al. Morphology matters: 0D/2D WO3 nanoparticle-ruthenium oxide nanosheet composites for enhanced photocatalytic oxygen evolution reaction rates[J]. Adv Energy Mater, 2023, 13(6): 2203315.

    [27] CHANDRA D, KATSUKI T, TANAHASHI Y, et al. Temperature-controlled transformation of WO3 nanowires into active facets-exposed hexagonal prisms toward efficient visible-light-driven water oxidation[J]. ACS Appl Mater Interfaces, 2023, 15(17): 20885-20896.

    [28] LEI B, CUI W, CHEN P, et al. C-doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction[J]. ACS Catal, 2022, 12(15): 9670-9678.

    [29] CHEN Q F, GAO G M, FAN H L, et al. Synergy of oxygen vacancies and acid sites on N-doped WO3 nanobelts for efficient C-C coupling synthesis of benzoin isopropyl ether[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4725-4738.

    [30] LEI J A, LIU H H, YUAN C P, et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering[J]. Chem Eng J, 2021, 416: 129164.

    [31] JIN B, WANG J G, XU F X, et al. Hierarchical hollow WO3 microspheres with tailored surface oxygen vacancies for boosting photocatalytic selective conversion of biomass-derived alcohols[J]. Appl Surf Sci, 2021, 547: 149239.

    [32] ZOU J W, LI Z D, KANG H S, et al. Strong visible light absorption and abundant hotspots in Au-decorated WO3 nanobricks for efficient SERS and photocatalysis[J]. ACS Omega, 2021, 6(42): 28347-28355.

    [33] WU X Y, TANG Z Y, ZHAO X X, et al. Visible-light driven room-temperature coupling of methane to ethane by atomically dispersed Au on WO3[J]. J Energy Chem, 2021, 61: 195-202.

    [34] PANG R, MISEKI Y, OKUNAKA S, et al. Photocatalytic production of hypochlorous acid over Pt/WO3 under simulated solar light[J]. ACS Sustainable Chem Eng, 2020, 8(23): 8629-8637.

    [35] SUN Y, DU B, WANG Y, et al. Hydrogen spillover-accelerated selective hydrogenation on WO3 with ppm-level Pd[J]. ACS Appl Mater Interfaces, 2023, 15(16): 20474-20482.

    [36] SHEN R C, ZHANG L, LI N, et al. W-N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution[J]. ACS Catal, 2022, 12(16): 9994-10003.

    [37] ZHANG Y Y, SHI L X, YUAN H Y, et al. Construction of melamine foam-supported WO3/CsPbBr3 S-scheme heterojunction with rich oxygen vacancies for efficient and long-period CO2 photoreduction in liquid-phase H2O environment[J]. Chem Eng J, 2022, 430: 132820.

    [38] LI B, SUN L Q, BIAN J, et al. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction[J]. Appl Catal B Environ, 2020, 270: 118849.

    [39] TANG M L, AO Y H, WANG P F, et al. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation[J]. J Hazard Mater, 2020, 387: 121713.

    [40] XIAO Y, TAO X Q, QIU G H, et al. Optimal synthesis of a direct Z-scheme photocatalyst with ultrathin W18O49 nanowires on g-C3N4 nanosheets for solar-driven oxidation reactions[J]. J Colloid Interface Sci, 2019, 550: 99-109.

    [41] SAMUEL O, OTHMAN M H D, KAMALUDIN R, et al. WO3-based photocatalysts: A review on synthesis, performance enhancement and photocatalytic memory for environmental applications[J]. Ceram Int, 2022, 48(5): 5845-5875.

    [42] SHANDILYA P, SAMBYAL S, SHARMA R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts[J]. J Hazard Mater, 2022, 428: 128218.

    [43] SHI W N, GUO X W, CUI C X, et al. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation[J]. Appl Catal B Environ, 2019, 243: 236-242.

    [44] LIANG Y, YANG Y, ZOU C W, et al. 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation[J]. J Alloys Compd, 2019, 783: 848-854.

    [45] PRAMANIK A, DHAR J A, BANERJEE R, et al. WO3 nanowire-attached reduced graphene oxide-based 1D-2D heterostructures for near-infrared light-driven synergistic photocatalytic and photothermal inactivation of multidrug-resistant superbugs[J]. ACS Appl Bio Mater, 2023, 6(2): 919-931.

    [46] WANG J G, CHEN Z M, ZHAI G J, et al. Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations[J]. Appl Surf Sci, 2018, 462: 760-771.

    [47] LIN R, WAN J W, XIONG Y, et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis[J]. J Am Chem Soc, 2018, 140(29): 9078-9082.

    [48] FENG F, HUA H F, LI L T, et al. Embedding 1D WO3 nanotubes into 2D ultrathin porous g-C3N4 to improve the stability and efficiency of photocatalytic hydrogen production[J]. ACS Appl Energy Mater, 2021, 4(5): 4365-4375.

    [49] GAO R R, CHENG B, FAN J J, et al. ZnxCd1-xS quantum dot with enhanced photocatalytic H2-production performance[J]. Chin J Catal, 2021, 42(1): 15-24.

    [50] ZHANG Z Z, CAO Y X, ZHANG F H, et al. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer[J]. Chem Eng J, 2022, 428: 131218.

    [51] WANG Y T, PENG C S, JIANG T, et al. Construction of defect-engineered three-dimensionally ordered macroporous WO3 for efficient photocatalytic water oxidation reaction[J]. J Mater Chem A, 2021, 9(5): 3036-3043.

    [52] RONG F, LU Q F, MAI H X, et al. Hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21138-21148.

    [53] GUO Y F, QUAN X, LU N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environ Sci Technol, 2007, 41(12): 4422-4427.

    [54] SUN S M, WATANABE M, WU J, et al. Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity[J]. J Am Chem Soc, 2018, 140(20): 6474-6482.

    [55] SUN Z Y, HUO R P, CHOI C, et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure[J]. Nano Energy, 2019, 62: 869-875.

    [56] LIANG L W, CHANG Q, CAI T T, et al. Combining carbon dots with WO3-x nanodots for utilizing the full spectrum of solar radiation in photocatalysis[J]. Chem Eng J, 2022, 428: 131139.

    [57] ZHU P Q, SUN X C, WANG Y W, et al. Multifunctional oxygen vacancies in WO3-x for catalytic alkylation of C-H by alcohols under red-light[J]. J Catal, 2021, 402: 208-217.

    [58] LUO L, HAN X Y, WANG K R, et al. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ[J]. Nat Commun, 2023, 14(1): 2690.

    [59] WANG Y T, CAI J M, WU M Q, et al. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B Environ, 2018, 239: 398-407.

    [60] LU Y, LI Y, WANG Y Y, et al. Two-photon induced NIR active core-shell structured WO3/CdS for enhanced solar light photocatalytic performance[J]. Appl Catal B Environ, 2020, 272: 118979.

    [61] WANG Honghong, LEI Wen, LI Xiaojian, et al. Prog Chem, 2020, 32(12): 1990-2003.

    [62] LIU X L, ZHAI H S, WANG P, et al. Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation[J]. Catal Sci Technol, 2019, 9(3): 652-658.

    [63] QUYEN V T, KIM J, PARK P M, et al. Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3[J]. J Environ Chem Eng, 2021, 9(1): 104737.

    [64] TIJANI J O, ABDULLAHI M N, BANKOLE M T, et al. Photocatalytic and toxicity evaluation of local dyeing wastewater by aluminium/boron doped WO3 nanoparticles[J]. J Water Process Eng, 2021, 44: 102376.

    [65] SUN K, LU Q F, MA C Q, et al. Pt modified ultrafine WO3 nanofibers: A combined first-principles and experimental study[J]. Mater Lett, 2019, 236: 267-270.

    [66] MURALI G, REDDY MODIGUNTA J K, PARK Y H, et al. A review on MXene synthesis, stability, and photocatalytic applications[J]. ACS Nano, 2022, 16(9): 13370-13429.

    [67] PANG X, XUE S X, ZHOU T, et al. Noble metal-free heterojunction of ultrathin Ti3C2 MXene/WO3 for boosted visible-light-driven photoreactivity[J]. Adv Sustain Syst, 2023, 7(1): 2100507.

    [68] HAN C, LEI Y P, WANG Y D. Recent progress on nano-heterostructure photocatalysts for solar fuels generation[J]. J Inorg Mater, 2015, 30(11): 1121.

    [69] HUANG J M, XUE P, WANG S, et al. Fabrication of zirconium-based metal-organic frameworks@tungsten trioxide (UiO-66-NH2@WO3) heterostructure on carbon cloth for efficient photocatalytic removal of tetracycline antibiotic under visible light[J]. J Colloid Interface Sci, 2022, 606(Pt 2): 1509-1523.

    [70] LIN N S, LIN Y A, QIAN X J, et al. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light[J]. ACS Sustainable Chem Eng, 2021, 9(40): 13686-13694.

    [71] ZHOU Q A, SONG Y, LI N J, et al. Direct dual Z-scheme Bi2WO6/GQDs/WO3 inverse opals for enhanced photocatalytic activities under visible light[J]. ACS Sustainable Chem Eng, 2020, 8(21): 7921-7927.

    [72] WANG L X, BIE C B, YU J G. Challenges of Z-scheme photocatalytic mechanisms[J]. Trends Chem, 2022, 4(11): 973-983.

    [73] FU J W, XU Q L, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl Catal B Environ, 2019, 243: 556-565.

    [74] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chin J Catal, 2020, 41(1): 9-20.

    LEI Wanying, ZHAO Liang, ZHOU Tong, XUE Shixiang, WU Pan, YANG Xinxin, TAN Ziqiang. Modification Strategy for WO3-Based Photocatalysts[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 322
    Download Citation