• High Power Laser Science and Engineering
  • Vol. 7, Issue 2, 02000e21 (2019)
Ping Li, Wei Wang, Jingqin Su, and Xiaofeng Wei†、*
Author Affiliations
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1017/hpl.2018.74 Cite this Article Set citation alerts
    Ping Li, Wei Wang, Jingqin Su, Xiaofeng Wei. Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e21 Copy Citation Text show less
    Schematic representation of the beam mixing process in transmission plate.
    Fig. 1. Schematic representation of the beam mixing process in transmission plate.
    Samples of equivalent phases and the corresponding AM patterns of SSD beam induced by etalon effect. In the left three figures, red curves and blue curves denote the equivalent phase and the original phase, respectively. The parameters are (a) one sinusoidal phase modulation with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}$, $a=2$, (c) one sinusoidal phase modulation with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$, $a=3.5$ and (e) two sinusoidal phase modulations with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$, $a_{1}=3$, $a_{2}=2$. The corresponding temporal ripples are shown in (b), (d) and (f) and the intensity scale is normalized to mean intensity.
    Fig. 2. Samples of equivalent phases and the corresponding AM patterns of SSD beam induced by etalon effect. In the left three figures, red curves and blue curves denote the equivalent phase and the original phase, respectively. The parameters are (a) one sinusoidal phase modulation with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}$, $a=2$, (c) one sinusoidal phase modulation with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$, $a=3.5$ and (e) two sinusoidal phase modulations with $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$, $a_{1}=3$, $a_{2}=2$. The corresponding temporal ripples are shown in (b), (d) and (f) and the intensity scale is normalized to mean intensity.
    Schematic representations of the focusing process for an SSD beam (single sinusoidal phase modulation). Integration of intensity on focal plane can reduce the distortion criterion of SSD beam. The colors represent the isointensity surface in near field, and the horizontal dashed line corresponds to AM patterns in near field as shown in Figure 2.
    Fig. 3. Schematic representations of the focusing process for an SSD beam (single sinusoidal phase modulation). Integration of intensity on focal plane can reduce the distortion criterion of SSD beam. The colors represent the isointensity surface in near field, and the horizontal dashed line corresponds to AM patterns in near field as shown in Figure 2.
    (a) Dependence of the far-field distortion criterion on the number of color cycle for an SSD beam, where the equivalent phase of $\unicode[STIX]{x1D711}_{0}$ is 0, $\unicode[STIX]{x1D70B}/6$, $\unicode[STIX]{x1D70B}/3$ and $\unicode[STIX]{x1D70B}/2$, respectively. (b) The comparison of AM patterns in near field and far field for an SSD beam with the parameters $N_{c}=1.3$ and $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$.
    Fig. 4. (a) Dependence of the far-field distortion criterion on the number of color cycle for an SSD beam, where the equivalent phase of $\unicode[STIX]{x1D711}_{0}$ is 0, $\unicode[STIX]{x1D70B}/6$, $\unicode[STIX]{x1D70B}/3$ and $\unicode[STIX]{x1D70B}/2$, respectively. (b) The comparison of AM patterns in near field and far field for an SSD beam with the parameters $N_{c}=1.3$ and $\unicode[STIX]{x1D711}_{0}=2\unicode[STIX]{x1D70B}n_{0}+\unicode[STIX]{x1D70B}/3$.
    Ping Li, Wei Wang, Jingqin Su, Xiaofeng Wei. Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e21
    Download Citation