• Acta Physica Sinica
  • Vol. 68, Issue 9, 094101-1 (2019)
Liu-Lei Wei1, Hong-Bo Cai2、3、4、*, Wen-Shuai Zhang2, Jian-Min Tian1, En-Hao Zhang1, Jun Xiong5, and Shao-Ping Zhu1、2、*
Author Affiliations
  • 1Graduate School, China Academy of Engineering Physics, Beijing 100088, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 3Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • 4IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5Shanghai Institute of Laser Plasma Research, Shanghai 201800, China
  • show less
    DOI: 10.7498/aps.68.20182291 Cite this Article
    Liu-Lei Wei, Hong-Bo Cai, Wen-Shuai Zhang, Jian-Min Tian, En-Hao Zhang, Jun Xiong, Shao-Ping Zhu. Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target[J]. Acta Physica Sinica, 2019, 68(9): 094101-1 Copy Citation Text show less
    (a) Schematic diagram of initial plasma density (local); (b) current in the foam target at 75T0. The simulation window size is . The units of plasma density and current are , and , respectively(a) 泡沫靶密度分布示意图(局部); (b) 75泡沫间隙的准静态电流(模拟窗口大小为; 图中密度无量纲单位为, 电流无量纲单位为)
    Fig. 1. (a) Schematic diagram of initial plasma density (local); (b) current in the foam target at 75T0. The simulation window size is . The units of plasma density and current are , and , respectively (a) 泡沫靶密度分布示意图(局部); (b) 75 泡沫间隙的准静态电流(模拟窗口大小为 ; 图中密度无量纲单位为 , 电流无量纲单位为 )
    Magnetic field distribution in foam region at 150: (a) Bubble radius is 0.075; (b) bubble radius is 0.15; (c) bubble radius is 0.6. The unit of magnetic field is 150的泡沫区磁场分布 (a) 泡沫孔径0.075; (b) 泡沫孔径0.15; (c) 泡沫孔径0.6(磁场无量纲单位为)
    Fig. 2. Magnetic field distribution in foam region at 150 : (a) Bubble radius is 0.075 ; (b) bubble radius is 0.15 ; (c) bubble radius is 0.6 . The unit of magnetic field is 150 的泡沫区磁场分布 (a) 泡沫孔径0.075 ; (b) 泡沫孔径0.15 ; (c) 泡沫孔径0.6 (磁场无量纲单位为 )
    Trajectory of 50 electrons whose initial positions randomly distributed on the front surface of the target: (a) Planar target; (b) foam target. The labeled number is the kinetic energy of the electrons moving to the area behind the target. The red line is the trajectory of one of the accelerated electrons50个初始位置随机分布在靶前表面的电子的轨迹(a)平面靶; (b)泡沫靶; 图中标注数字为运动到靶后区域单个电子的动能, 红色线表示其中一个电子加速后的轨迹
    Fig. 3. Trajectory of 50 electrons whose initial positions randomly distributed on the front surface of the target: (a) Planar target; (b) foam target. The labeled number is the kinetic energy of the electrons moving to the area behind the target. The red line is the trajectory of one of the accelerated electrons50个初始位置随机分布在靶前表面的电子的轨迹(a)平面靶; (b)泡沫靶; 图中标注数字为运动到靶后区域单个电子的动能, 红色线表示其中一个电子加速后的轨迹
    Evolution of electron energy and position with time in multiple acceleration of electron. Here, the x = (40, 42)region marked with yellow is the foam region电子多次加速过程中的能量和位置随时间演化, 图中x = (40, 42)黄色标记区域为泡沫靶区
    Fig. 4. Evolution of electron energy and position with time in multiple acceleration of electron. Here, the x = (40, 42) region marked with yellow is the foam region 电子多次加速过程中的能量和位置随时间演化, 图中x = (40, 42) 黄色标记区域为泡沫靶区
    Spatial distribution of electron energy density for (a) planar target, and bubble target with bubble size of (b) 0.075, (c) 0.15, (d) 0.6. The unit of electron energy density is 平面靶和不同孔径泡沫靶的电子能量密度空间分布 (a)平面靶; (b)泡沫孔径0.075; (c)泡沫孔径0.15; (d)泡沫孔径0.6; 电子能量密度无量纲单位为
    Fig. 5. Spatial distribution of electron energy density for (a) planar target, and bubble target with bubble size of (b) 0.075 , (c) 0.15 , (d) 0.6 . The unit of electron energy density is 平面靶和不同孔径泡沫靶的电子能量密度空间分布 (a)平面靶; (b)泡沫孔径0.075 ; (c)泡沫孔径0.15 ; (d)泡沫孔径0.6 ; 电子能量密度无量纲单位为
    (a) Electron energy spectra of foam targets with different bubble radii; (b) electron energy spectra of foam targets with different foam thicknesses(a)不同孔径泡沫靶的超热电子能谱; (b)不同厚度泡沫靶的超热电子能谱
    Fig. 6. (a) Electron energy spectra of foam targets with different bubble radii; (b) electron energy spectra of foam targets with different foam thicknesses(a)不同孔径泡沫靶的超热电子能谱; (b)不同厚度泡沫靶的超热电子能谱
    Liu-Lei Wei, Hong-Bo Cai, Wen-Shuai Zhang, Jian-Min Tian, En-Hao Zhang, Jun Xiong, Shao-Ping Zhu. Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target[J]. Acta Physica Sinica, 2019, 68(9): 094101-1
    Download Citation