• Acta Physica Sinica
  • Vol. 68, Issue 7, 070302-1 (2019)
Qiang Miao*, Xiang Li, De-Wei Wu, Jun-Wen Luo, Tian-Li Wei, and Hao-Nan Zhu
DOI: 10.7498/aps.68.20191981 Cite this Article
Qiang Miao, Xiang Li, De-Wei Wu, Jun-Wen Luo, Tian-Li Wei, Hao-Nan Zhu. Preparation methods and progress of experiments of quantum microwave[J]. Acta Physica Sinica, 2019, 68(7): 070302-1 Copy Citation Text show less
(a) Schematics of the cavity optomechanical system; (b) schematics of the cavity electromechanics system.(a) 腔–光–力学系统结构示意图; (b) 腔–电–力学系统结构示意图
Fig. 1. (a) Schematics of the cavity optomechanical system; (b) schematics of the cavity electromechanics system.(a) 腔–光–力学系统结构示意图; (b) 腔–电–力学系统结构示意图
Cavity quantum electrodynamics system.腔量子电动力学系统
Fig. 2. Cavity quantum electrodynamics system.腔量子电动力学系统
The experimental set-up of generating microwave single-photon, where the left inset denotes qubit. a: superconducting transmission line resonator; c: output capacitance; d: thermal noise port; e/f: coherent measurement port; Z0 and Z1 are matching impedance.微波单光子产生设备[35], 左侧内插图为超导量子比特 a: 超导传输线谐振腔; c: 输出电容; d: 热噪声端口; e/f: 相干测量端口; Z0和Z1为匹配阻抗
Fig. 3. The experimental set-up of generating microwave single-photon, where the left inset denotes qubit. a: superconducting transmission line resonator; c: output capacitance; d: thermal noise port; e/f: coherent measurement port; Z0 and Z1 are matching impedance. 微波单光子产生设备[35], 左侧内插图为超导量子比特 a: 超导传输线谐振腔; c: 输出电容; d: 热噪声端口; e/f: 相干测量端口; Z0Z1为匹配阻抗
Principle and structure of frequency-adjustable microwave single-photon source.频率可调微波单光子源原理与结构[37]
Fig. 4. Principle and structure of frequency-adjustable microwave single-photon source.频率可调微波单光子源原理与结构[37]
Principle of generating entangled microwave photon pair using quantum dots.利用量子点产生纠缠微波光子对的原理[45]
Fig. 5. Principle of generating entangled microwave photon pair using quantum dots.利用量子点产生纠缠微波光子对的原理[45]
The scanning-electron micrograph of the experimental device and SQUID of Wilson group[48].Wilson小组实验装置及超导量子干涉仪电子扫描照片[48]
Fig. 6. The scanning-electron micrograph of the experimental device and SQUID of Wilson group[48]. Wilson小组实验装置及超导量子干涉仪电子扫描照片[48]
Sketch of an equivalent circuit principle of Josephson-photonics device.约瑟夫森–光子装置等效电路原理图[51]
Fig. 7. Sketch of an equivalent circuit principle of Josephson-photonics device.约瑟夫森–光子装置等效电路原理图[51]
The typical structure of electro-opto-mechanical system.电–光–力学系统典型结构
Fig. 8. The typical structure of electro-opto-mechanical system.电–光–力学系统典型结构
Schematic of microwave quantum illumination.微波量子照射雷达示意图[61]
Fig. 9. Schematic of microwave quantum illumination.微波量子照射雷达示意图[61]
Scheme of generating two-mode squeezed state using quantum reservoir.利用量子库产生双模压缩态方案[66]
Fig. 10. Scheme of generating two-mode squeezed state using quantum reservoir.利用量子库产生双模压缩态方案[66]
Scheme of generating two-mode squeezed state based on the coupling of ultracold atoms and superconducting transmission line resonator.基于超冷原子与超导传输线腔耦合产生双模压缩态方案[67]
Fig. 11. Scheme of generating two-mode squeezed state based on the coupling of ultracold atoms and superconducting transmission line resonator.基于超冷原子与超导传输线腔耦合产生双模压缩态方案[67]
(a) Josephson parametric amplifier; (b) 180° hybrid ring microwave beam splitter.(a) 约瑟夫森参量放大器[71]; (b) 180°混合环微波分束器[72]
Fig. 12. (a) Josephson parametric amplifier; (b) 180° hybrid ring microwave beam splitter.(a) 约瑟夫森参量放大器[71]; (b) 180°混合环微波分束器[72]
Schematic of generating squeezed microwave field using four-wave mixing.四波混频产生压缩微波场[73]
Fig. 13. Schematic of generating squeezed microwave field using four-wave mixing.四波混频产生压缩微波场[73]
Schematic of generating entangled microwave field using the squeezed field and vacuum field.压缩场与真空场耦合产生纠缠微波场[74]
Fig. 14. Schematic of generating entangled microwave field using the squeezed field and vacuum field.压缩场与真空场耦合产生纠缠微波场[74]
Schematic of generating two-mode squeezed microwave field using Josephson mixer.约瑟夫森混频器产生双模压缩微波场[78]
Fig. 15. Schematic of generating two-mode squeezed microwave field using Josephson mixer.约瑟夫森混频器产生双模压缩微波场[78]
The microwave parametric amplifier device based on cavity electromechanics system.基于腔–电–力学系统的微波参量放大装置[81]
Fig. 16. The microwave parametric amplifier device based on cavity electromechanics system.基于腔–电–力学系统的微波参量放大装置[81]
Device of generating two-mode squeezed microwave field based on cavity electromechanics system.基于腔–电–力学系统的双模压缩微波场产生装置[82]
Fig. 17. Device of generating two-mode squeezed microwave field based on cavity electromechanics system.基于腔–电–力学系统的双模压缩微波场产生装置[82]
The jointed system of circuit quantum electrodynamics and cavity electromechanics system that generating squeezed microwave field.超导电路量子电动力学与腔–电–力学的联合系统制备压缩微波场[83]
Fig. 18. The jointed system of circuit quantum electrodynamics and cavity electromechanics system that generating squeezed microwave field.超导电路量子电动力学与腔–电–力学的联合系统制备压缩微波场[83]
Scheme of electro-opto-mechanical system to generate continuous variable entangled microwave field.连续变量纠缠微波场的电–光–力学产生方案[88]
Fig. 19. Scheme of electro-opto-mechanical system to generate continuous variable entangled microwave field.连续变量纠缠微波场的电–光–力学产生方案[88]
Qiang Miao, Xiang Li, De-Wei Wu, Jun-Wen Luo, Tian-Li Wei, Hao-Nan Zhu. Preparation methods and progress of experiments of quantum microwave[J]. Acta Physica Sinica, 2019, 68(7): 070302-1
Download Citation