Qiang Miao, Xiang Li, De-Wei Wu, Jun-Wen Luo, Tian-Li Wei, Hao-Nan Zhu. Preparation methods and progress of experiments of quantum microwave [J]. Acta Physica Sinica, 2019, 68(7): 070302-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 68, Issue 7, 070302-1 (2019)

Fig. 1. (a) Schematics of the cavity optomechanical system; (b) schematics of the cavity electromechanics system.(a) 腔–光–力学系统结构示意图; (b) 腔–电–力学系统结构示意图

Fig. 2. Cavity quantum electrodynamics system.腔量子电动力学系统
![The experimental set-up of generating microwave single-photon, where the left inset denotes qubit. a: superconducting transmission line resonator; c: output capacitance; d: thermal noise port; e/f: coherent measurement port; Z0 and Z1 are matching impedance.微波单光子产生设备[35], 左侧内插图为超导量子比特 a: 超导传输线谐振腔; c: 输出电容; d: 热噪声端口; e/f: 相干测量端口; Z0和Z1为匹配阻抗](/Images/icon/loading.gif)
Fig. 3. The experimental set-up of generating microwave single-photon, where the left inset denotes qubit. a: superconducting transmission line resonator; c: output capacitance; d: thermal noise port; e/f: coherent measurement port; Z 0 and Z 1 are matching impedance.
微波单光子产生设备[35], 左侧内插图为超导量子比特 a: 超导传输线谐振腔; c: 输出电容; d: 热噪声端口; e/f: 相干测量端口; Z 0和Z 1为匹配阻抗
![Principle and structure of frequency-adjustable microwave single-photon source.频率可调微波单光子源原理与结构[37]](/Images/icon/loading.gif)
Fig. 4. Principle and structure of frequency-adjustable microwave single-photon source.频率可调微波单光子源原理与结构[37]
![Principle of generating entangled microwave photon pair using quantum dots.利用量子点产生纠缠微波光子对的原理[45]](/Images/icon/loading.gif)
Fig. 5. Principle of generating entangled microwave photon pair using quantum dots.利用量子点产生纠缠微波光子对的原理[45]
![The scanning-electron micrograph of the experimental device and SQUID of Wilson group[48].Wilson小组实验装置及超导量子干涉仪电子扫描照片[48]](/Images/icon/loading.gif)
Fig. 6. The scanning-electron micrograph of the experimental device and SQUID of Wilson group[48].
Wilson小组实验装置及超导量子干涉仪电子扫描照片[48]
![Sketch of an equivalent circuit principle of Josephson-photonics device.约瑟夫森–光子装置等效电路原理图[51]](/Images/icon/loading.gif)
Fig. 7. Sketch of an equivalent circuit principle of Josephson-photonics device.约瑟夫森–光子装置等效电路原理图[51]

Fig. 8. The typical structure of electro-opto-mechanical system.电–光–力学系统典型结构
![Schematic of microwave quantum illumination.微波量子照射雷达示意图[61]](/Images/icon/loading.gif)
Fig. 9. Schematic of microwave quantum illumination.微波量子照射雷达示意图[61]
![Scheme of generating two-mode squeezed state using quantum reservoir.利用量子库产生双模压缩态方案[66]](/Images/icon/loading.gif)
Fig. 10. Scheme of generating two-mode squeezed state using quantum reservoir.利用量子库产生双模压缩态方案[66]
![Scheme of generating two-mode squeezed state based on the coupling of ultracold atoms and superconducting transmission line resonator.基于超冷原子与超导传输线腔耦合产生双模压缩态方案[67]](/Images/icon/loading.gif)
Fig. 11. Scheme of generating two-mode squeezed state based on the coupling of ultracold atoms and superconducting transmission line resonator.基于超冷原子与超导传输线腔耦合产生双模压缩态方案[67]
![(a) Josephson parametric amplifier; (b) 180° hybrid ring microwave beam splitter.(a) 约瑟夫森参量放大器[71]; (b) 180°混合环微波分束器[72]](/Images/icon/loading.gif)
Fig. 12. (a) Josephson parametric amplifier; (b) 180° hybrid ring microwave beam splitter.(a) 约瑟夫森参量放大器[71]; (b) 180°混合环微波分束器[72]
![Schematic of generating squeezed microwave field using four-wave mixing.四波混频产生压缩微波场[73]](/Images/icon/loading.gif)
Fig. 13. Schematic of generating squeezed microwave field using four-wave mixing.四波混频产生压缩微波场[73]
![Schematic of generating entangled microwave field using the squeezed field and vacuum field.压缩场与真空场耦合产生纠缠微波场[74]](/Images/icon/loading.gif)
Fig. 14. Schematic of generating entangled microwave field using the squeezed field and vacuum field.压缩场与真空场耦合产生纠缠微波场[74]
![Schematic of generating two-mode squeezed microwave field using Josephson mixer.约瑟夫森混频器产生双模压缩微波场[78]](/Images/icon/loading.gif)
Fig. 15. Schematic of generating two-mode squeezed microwave field using Josephson mixer.约瑟夫森混频器产生双模压缩微波场[78]
![The microwave parametric amplifier device based on cavity electromechanics system.基于腔–电–力学系统的微波参量放大装置[81]](/Images/icon/loading.gif)
Fig. 16. The microwave parametric amplifier device based on cavity electromechanics system.基于腔–电–力学系统的微波参量放大装置[81]
![Device of generating two-mode squeezed microwave field based on cavity electromechanics system.基于腔–电–力学系统的双模压缩微波场产生装置[82]](/Images/icon/loading.gif)
Fig. 17. Device of generating two-mode squeezed microwave field based on cavity electromechanics system.基于腔–电–力学系统的双模压缩微波场产生装置[82]
![The jointed system of circuit quantum electrodynamics and cavity electromechanics system that generating squeezed microwave field.超导电路量子电动力学与腔–电–力学的联合系统制备压缩微波场[83]](/Images/icon/loading.gif)
Fig. 18. The jointed system of circuit quantum electrodynamics and cavity electromechanics system that generating squeezed microwave field.超导电路量子电动力学与腔–电–力学的联合系统制备压缩微波场[83]
![Scheme of electro-opto-mechanical system to generate continuous variable entangled microwave field.连续变量纠缠微波场的电–光–力学产生方案[88]](/Images/icon/loading.gif)
Fig. 19. Scheme of electro-opto-mechanical system to generate continuous variable entangled microwave field.连续变量纠缠微波场的电–光–力学产生方案[88]
Set citation alerts for the article
Please enter your email address