• Frontiers of Optoelectronics
  • Vol. 15, Issue 4, 12200 (2022)
[in Chinese]1, [in Chinese]1、2, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]3、4, [in Chinese]1、3、5, and [in Chinese]、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
  • show less
    DOI: 10.1007/s12200-022-00051-2 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Advanced functional nanofibers: strategies to improve performance and expand functions[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200 Copy Citation Text show less
    References

    [1] Xie, F., Wang, Y., Zhuo, L., Jia, F., Ning, D., Lu, Z.: Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl. Mater. Interfaces 12(50), 56499–56508 (2020)

    [2] Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010)

    [3] Wang, M., Li, D., Li, J., Li, S., Chen, Z., Yu, D.G., Liu, Z., Guo, J.Z.: Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 196, 109075 (2020)

    [4] Wang, X., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)

    [5] Nikfarjam, A., Hosseini, S., Salehifar, N.: Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl. Mater. Interfaces 9(18), 15662–15671 (2017)

    [6] Yue, X., Yi, S., Wang, R., Zhang, Z., Qiu, S.: Well-controlled SrTiO3@ Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 47, 463–473 (2018)

    [7] Wan, K., Wang, D., Wang, F., Li, H., Xu, J., Wang, X., Yang, J.: Hierarchical In2O3@ SnO2 core–shell nanofiber for high efficiency formaldehyde detection. ACS Appl. Mater. Interfaces 11(48), 45214–45225 (2019)

    [8] Tomboc, G.M., Kim, H.: Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404 (2019)

    [9] Choi, J., Chan, S., Joo, H., Yang, H., Ko, F.K.: Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photocatalyst for water treatment. Water Res. 101, 362–369 (2016)

    [10] Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 80(293), 1455–1457 (2001)

    [11] Chakrabarty, A., Raffy, G., Maity, M., Gartzia-Rivero, L., Marre, S., Aymonier, C., Maitra, U., Del Guerzo, A.: Nanofiber-directed anisotropic self-assembly of CdSe-CdS quantum rods for linearly polarized light emission evidenced by quantum rod orientation microscopy. Small 14(37), e1802311 (2018)

    [12] Nanofibers, B., Simbrunner, C., Quochi, F., Hernandez-sosa, G., Oehzelt, M., Resel, R., Arndt, M., Saba, M., Mura, A., Bongiovanni, G., Sitter, H.: Organic-organic heteroepitaxy of red-,green-, and blue-emitting nanofiber. ACS Nano 2010(4), 6244–6250 (2010)

    [13] Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., Zhu, Z.: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21(2), 444–448 (2011)

    [14] Liao, X., Kahle, F.J., Liu, B., Bassler, H., Zhang, X., Kohler, A., Greiner, A.: Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz. 7(6), 1605–1612 (2020)

    [15] Wang, Q., Schniepp, H.C.: Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7(11), 1364–1370 (2018)

    [16] Yang, X., Li, L., Yang, D., Nie, J., Ma, G.: Electrospun core–shell fibrous 2D Scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv. Fiber Mater. 2(2), 105–117 (2020)

    [17] Cui, T., Yu, J., Li, Q., Wang, C.F., Chen, S., Li, W., Wang, G.: Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), e2000982 (2020)

    [18] Fei, L., Hu, Y., Li, X., Song, R., Sun, L., Huang, H., Gu, H., Chan, H.L.W., Wang, Y.: Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. ACS Appl. Mater. Interfaces 7(6), 3665–3670 (2015)

    [19] An, A.K., Guo, J., Lee, E.J., Jeong, S., Zhao, Y., Wang, Z., Leiknes, T.O.: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57–67 (2017)

    [20] Ning, Y., Zhang, Z., Teng, F., Fang, X.: Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14(13), e1703754 (2018)

    [21] Wang, Q., Jian, M., Wang, C., Zhang, Y.: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657 (2017)

    [22] Zhang, R., Liu, C., Hsu, P.C., Zhang, C., Liu, N., Zhang, J., Lee, H.R., Lu, Y., Qiu, Y., Chu, S., Cui, Y.: Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 16(6), 3642–3649 (2016)

    [23] Qin, R., Shao, G., Hou, J., Zheng, Z., Zhai, T., Li, H.: Onepot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci. Bull. (Beijing) 62(15), 1081–1088 (2017)

    [24] Kaufman, J.J., Tao, G., Shabahang, S., Deng, D.S., Fink, Y., Abouraddy, A.F.: Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. Nano Lett. 11(11), 4768–4773 (2011)

    [25] Yaman, M., Khudiyev, T., Ozgur, E., Kanik, M., Aktas, O., Ozgur, E.O., Deniz, H., Korkut, E., Bayindir, M.: Arrays of indefinitely long uniform nanowires and nanotubes. Nat. Mater. 10(7), 494–501 (2011)

    [26] Deng, D.S., Orf, N.D., Abouraddy, A.F., Stolyarov, A.M., Joannopoulos, J.D., Stone, H.A., Fink, Y.: In-fiber semiconductor filament arrays. Nano Lett. 8(12), 4265–4269 (2008)

    [27] Zuo, F., Tan, D.H., Wang, Z., Jeung, S., Macosko, C.W., Bates, F.S.: Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2(4), 301–305 (2013)

    [28] Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013)

    [29] Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48, 3306–3316 (2007)

    [30] Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010)

    [31] Wang, D., Sun, G., Chiou, B.S.: A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol. Mater. Eng. 292(4), 407–414 (2007)

    [32] Nakata, K., Fujii, K., Ohkoshi, Y., et al.: Poly(ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun. 28(6), 792–795 (2007)

    [33] Cheng, K.C.K., Bedolla-Pantoja, M.A., Kim, Y.K., Gregory, J.V., Xie, F., De France, A., Hussal, C., Sun, K., Abbott, N.L., Lahann, J.: Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science 80(362), 804–808 (2018)

    [34] Virji, S., Huang, J., Kaner, R.B., Weiller, B.H.: Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4(3), 491–496 (2004)

    [35] Wang, Y., Xu, S., Cheng, H., Liu, W., Chen, F., Liu, X., Liu, J., Chen, S., Hu, C.: Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method. Appl. Surf. Sci. 428, 315–321 (2018)

    [36] Huang, J., Kaner, R.B.: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126(3), 851–855 (2004)

    [37] Harfenist, S.A., Cambron, S.D., Nelson, E.W., Berry, S.M., Isham, A.W., Crain, M.M., Walsh, K.M., Keynton, R.S., Cohn, R.W.: Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett. 4(10), 1931–1937 (2004)

    [38] Gu, F., Zhang, L., Yin, X., Tong, L.: Polymer single-nanowire optical sensors. Nanoscale Res Lett 4, 94 (2009)

    [39] Wang, C., Kim, J., Kim, M., Lim, H., Zhang, M., You, J., Yun, J.H., Bando, Y., Li, J., Yamauchi, Y.: Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A Mater. Energy Sustain 7(22), 13743–13750 (2019)

    [40] Hwang, I., Guan, Z., Cao, C., Tang, W., Chui, C.O., Li, X.: Nanoparticles suppress fluid instabilities in the thermal drawing of ultralong nanowires. Nat. Commun. 11(1), 5932 (2020)

    [41] Li, D., Wang, Y., Xia, Y.: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 3(8), 1167–1171 (2003)

    [42] Marek, P., Senecal, K., Nida, D., Magnone, J., Senecal, A.: Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane. J. Nanobiotechnol 9(1), 48 (2011)

    [43] Lin, M.F., Xiong, J., Wang, J., Parida, K., Lee, P.S.: Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018)

    [44] Wu, J., Wang, N., Zhao, Y., Jiang, L.: Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A Mater. Energy Sustain. 1(25), 7290–7305 (2013)

    [45] Frenot, A., Chronakis, I.S.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)

    [46] Wen, X., Xiong, J., Lei, S., Wang, L., Qin, X.: Diameter refinement of electrospun nanofibers: from mechanism. Strategies to applications. Adv. Fiber Mater. (2022)

    [47] Deng, Y., Lu, T., Cui, J., Keshari, S., Xiong, R., Huang, C.: Biobased electrospun nanofiber as building blocks for a novel ecofriendly air filtration membrane: a review. Separ. Purif. Tech. 277, 119623 (2021)

    [48] Cao, X., Deng, J., Pan, K.: Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv. Fiber Mater. 2(2), 85–92 (2020)

    [49] Chen, J., Pakdel, E., Xie, W., Sun, L., Xu, M., Liu, Q., Wang, D.: High-performance natural melanin/poly(vinyl alcohol-coethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2(2), 64–73 (2020)

    [50] Arshad, S.N., Naraghi, M., Chasiotis, I.: Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719 (2011)

    [51] Wang, L., Wu, Y., Guo, B., Ma, P.X.: Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9), 9167–9179 (2015)

    [52] Yan, W., Richard, I., Kurtuldu, G., James, N.D., Schiavone, G., Squair, J.W., Nguyen-Dang, T., Das Gupta, T., Qu, Y., Cao, J.D., Ignatans, R., Lacour, S.P., Tileli, V., Courtine, G., Loffler, J.F., Sorin, F.: Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotechnol. 15(10), 875–882 (2020)

    [53] Hu, X., Zhang, X., Shen, X., Li, H.: Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem Plasma Process 34, 1129–1139 (2014)

    [54] Huang, J., Kaner, R.B.: Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. 116(43), 5941–5945 (2004)

    [55] Loscertales, I.G., Barrero, A., Márquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G.: Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126(17), 5376–5377 (2004)

    [56] Hasegawa, T., Mikuni, T.: Higher-order structural analysis of Nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J. Appl. Polym. Sci. 131, 40361 (2014)

    [57] Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Ko, P.: In situ deposition of PLGA nano fibers via solution blow spinning. ACS Macro Lett. 3(3), 249 (2014)

    [58] Ren, L., Ozisik, R., Kotha, S.P.: Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J. Colloid Interface Sci. 425, 136–142 (2014)

    [59] Rolandi, M., Rolandi, R.: Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 207, 216–222 (2014)

    [60] Song, J., Zhang, B., Lu, Z., Xin, Z., Liu, T., Wei, W., Zia, Q., Pan, K., Gong, R.H., Bian, L., Li, Y., Li, J.: Hierarchical porous poly (l-lactic acid) nano fi brous membrane for ultra fi ne particulate aerosol filtration. ACS Appl. Mater. Interfaces (2019)

    [61] Im, J.S., Park, S.J., Kim, T.J., Kim, Y.H., Lee, Y.S.: The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid Interface Sci. 318(1), 42–49 (2008)

    [62] Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., Zhang, Y.: Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)

    [63] Liu, Q., Wang, Y., Dai, L., Yao, J.: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28(15), 3000–3006 (2016)

    [64] Lee, C.G., Javed, H., Zhang, D., Kim, J.H., Westerhoff, P., Li, Q., Alvarez, P.J.J.: Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52(7), 4285–4293 (2018)

    [65] Ma, W., Li, Y., Zhang, M., Gao, S., Cui, J., Huang, C., Fu, G.: Biomimetic durable multifunctional self-cleaning nano fibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interfaces. 12(31), 34999–35010 (2020)

    [66] Zhu, L.F., Zheng, Y., Fan, J., Yao, Y., Ahmad, Z., Chang, M.W.: A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci. 137, 105002 (2019)

    [67] Zhu, Y., Song, L., Song, N., Li, M., Wang, C., Lu, X.: Bifunctional and efficient CoS2-C@MoS2 core–shell nanofiber electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 7(3),2899–2905 (2019)

    [68] Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417 (2017)

    [69] Wang, K., Liu, X.K., Chen, X.H., Yu, D.G., Yang, Y.Y., Liu, P.: Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl. Mater. Interfaces 10(3), 2859–2867 (2018)

    [70] Hwang, S.H., Kim, Y.K., Hong, S.H., Lim, S.K.: Cu/CuO@ZnO hollow nanofiber gas sensor: effect of hollow nanofiber structure and P-N junction on operating temperature and sensitivity. Sensors (Basel) 19(14), 1–11 (2019)

    [71] Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011)

    [72] Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G., Pan, A.: Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. (Beijing) 64(4), 261–269 (2019)

    [73] Sun, F., Qi, H., Xie, Y., Ma, Q., He, W., Xu, D., Wang, G., Yu, W., Wang, T., Dong, X.: Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant. J. Alloys Compd. 830, 154673 (2020)

    [74] Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R.: Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 111, 110805 (2020)

    [75] Gao, Y., Xiao, Z., Kong, D., Iqbal, R., Yang, Q.H., Zhi, L.: N, P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 64, 103879 (2019)

    [76] Zhu, R., Chen, F., Wang, J., Song, Y., Cheng, J., Mao, M., Ma, H., Lu, J., Cheng, Y.: Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution (PMID:32296800)

    [77] Liu, J., Yuan, H., Qiao, J., Feng, J., Xu, C., Wang, Z., Sun, W., Sun, K.: Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 5(33), 17216–17220 (2017)

    [78] Li, S., Yin, J., Xu, L.: Batch fabrication and characterization of ZnO/PLGA/PCL nanofiber membranes for antibacterial materials. Fibers Polym. 23(5), 1225–1234 (2022)

    [79] Zhang, M., Yang, J., Kang, Z., Wu, X., Tang, L., Qiang, Z., Zhang, D., Pan, X.: Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. J. Hazard. Mater. 404(Pt A), 124095 (2021)

    [80] Shao, Z., Chen, Y., Jiang, J., Xiao, Y., Kang, G., Wang, X., Li, W., Zheng, G.: Multistage-split ultrafine fluffy nanofibrous membrane for high-efficiency antibacterial air filtration. ACS Appl. Mater. Interfaces 14(16), 18989–19001 (2022)

    [81] Zupancic, S, Sinha-Ray, S., Sinha-Ray, S., Kristl, J., Yarin, A.L.: Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol. Pharm. 13(1), 295–305 (2016)

    [82] Yao, Q., Cosme, J.G.L., Xu, T., Miszuk, J.M., Picciani, P.H.S., Fong, H., Sun, H.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115–127 (2017)

    [83] Lobo, A.O., Afewerki, S., de Paula, M.M.M., Ghannadian, P., Marciano, F.R., Zhang, Y.S., Webster, T.J., Khademhosseini, A.: Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomed 13, 7891–7903 (2018)

    [84] Sun, H.W., Zhang, H., Zhen, Q., Wang, S.F., Hu, J.J., Cui, J.Q., Qian, X.M.: Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. J. Polym. Res. 29(8), 1–10 (2022)

    [85] Panomsuwan, G., Saito, N., Ishizaki, T.: Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metalfree cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8(11), 6962–6971 (2016)

    [86] Al-Hammadi, S.A., Al-Amer, A.M., Saleh, T.A.: Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions. Chem. Eng. J. 345, 242–251 (2018)

    [87] Xu, T., Zheng, F., Chen, Z., Ding, Y., Liang, Z., Liu, Y., Zhu, Z., Fong, H.: Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chem. Eng. J. 360, 280–288 (2019)

    [88] Choi, S.J., Kim, S.J., Cho, H.J., Jang, J.S., Lin, Y.M., Tuller, H.L., Rutledge, G.C., Kim, I.D.: WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7), 911–920 (2016)

    [89] Wang, K., Li, J., Li, W., Wei, W., Zhang, H., Wang, L.: Highly active Co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv. Mater. Technol. 4, 1–8 (2018)

    [90] Wang, Y., Górecki, R.P., Stamate, E., Norrman, K., Aili, D., Zuo, M., Guo, W., Hélix-Nielsen, C., Zhang, W.: Preparation of superhydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 9(1), 278–286 (2019)

    [91] Cheng, H., Xiao, D., Tang, Y., Wang, B., Feng, X., Lu, M., Vancso, G.J., Sui, X.: Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9(17), e1901796 (2020)

    [92] Chen, W.S., Hsieh, P.H., Yang, W.N., Fan-Jen, P.Z., Yang, M.L., Yeh, J.M., Wei, Y., Chin, T.Y., Chen-Yang, Y.W.: Chemically modified electrospun silica nanofibers for promoting growth and differentiation of neural stem cells. J. Mater. Chem. B Mater. Biol. Med. 2(9), 1205–1215 (2014)

    [93] Saeed, K., Haider, S., Oh, T.J., Park, S.Y.: Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 322(2), 400–405 (2008)

    [94] Yazdi, M.G., Ivanic, M., Mohamed, A., Uheida, A.: Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 8(43), 24588–24598 (2018)

    [95] Morillo Martín, D., Faccini, M., García, M.A., Amantia, D.: Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J. Environ. Chem. Eng. 6(1), 236–245 (2018)

    [96] Zhao, R., Li, X., Sun, B., Shen, M., Tan, X., Ding, Y., Jiang, Z., Wang, C.: Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 268, 290–299 (2015)

    [97] Meng, C., Xiao, Y., Wang, P., Zhang, L., Liu, Y., Tong, L.: Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 23(33), 3770–3774 (2011)

    [98] Ma, W., Jiang, Z., Lu, T., Xiong, R., Huang, C.: Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil / water separation and pressure sensing. Chem. Eng. J. 430, 132989 (2022)

    [99] Deng, Y., Lu, T., Cui, J., Ma, W., Qu, Q., Zhang, X., Zhang, Y., Zhu, M., Xiong, R., Huang, C.: Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separ. Purif. Tech. 294, 121093 (2022)

    [100] Ma, W., Zhang, M., Liu, Z., Kang, M., Huang, C., Fu, G.: Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J. Membr. Sci. 570–571, 303–313 (2019)

    [101] Zhu, J., Sun, H., Xu, Y., Liu, T., Hou, T., Liu, L., Li, Y., Lin, T., Xin, Y.: Preparation of PVDF/TiO2 nanofibers with enhanced piezoelectric properties for geophone applications. Smart Mater. Struct. 28(8), 085006 (2019)

    [102] Cao, X., Zhu, Y., Shi, T., Lei, J., Tang, X., Zhang, D.: Electrospinning preparation of La-doped SnO2 hollow nanofibers: an improvement of their gas sensing properties. J. Nanosci. Nanotechnol. 18(10), 6965–6970 (2018)

    [103] Shi, C., Zhu, Y., Xu, Q., Tao, X., Kong, C.: A study of ordered La-doped SnO2 nanofibers in light of their length and gas sensitivity. Phys. E. 124, 114294 (2020)

    [104] Yao, Z., Xia, M., Xiong, Z., Wu, Y., Cheng, P., Cheng, Q., Xu, J., Wang, D., Liu, K.: A hierarchical structure of flower-like zinc oxide and poly(vinyl alcohol-co-ethylene) nanofiber hybrid membranes for high-performance air filters. ACS Omega 7(3), 3030–3036 (2022)

    [105] Katta, P., Alessandro, M., Ramsier, R.D., Chase, G.G.: Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 4(11), 2215–2218 (2004)

    [106] Fennessey, S.F., Farris, R.J.: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf.) 45(12), 4217–4225 (2004)

    [107] Lunni, D., Cianchetti, M., Filippeschi, C., Sinibaldi, E., Mazzolai, B.: Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7(4), 1–8 (2020)

    [108] Li, D., Wang, Y., Xia, Y.: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366 (2004)

    [109] Liu, J., Chen, G., Gao, H., Zhang, L., Ma, S., Liang, J., Fong, H.: Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon 50(3), 1262–1270 (2012)

    [110] Lee, J., Choi, J., Cho, A.E., Kumar, S., Jang, S.S., Kim, Y.H.: Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons. Adv. Funct. Mater. 28(15), 1–7 (2018)

    [111] Ma, S., Liu, J., Liu, Q., Liang, J., Zhao, Y., Fong, H.: Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des. 95, 387–397 (2016)

    [112] Kim, D.W., Kim, C.H., Yang, C.M., Ahn, S., Kim, Y.H., Hong, S.K., Kim, K.S., Hwang, J.Y., Choi, G.B., Kim, Y.A., Yang, K.S.: Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615 (2019)

    [113] Zhang, B., Kang, F., Tarascon, J.M., Kim, J.K.: Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 76, 319–380 (2016)

    [114] Li, W.T., Zhang, X.D., Guo, X.: Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sens. Actuators B Chem. 244, 509–521 (2017)

    [115] Cai, J., Chawla, S., Naraghi, M.: Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 109, 813–822 (2016)

    [116] Song, Y.N., Lei, M.Q., Deng, L.F., Lei, J., Li, Z.M.: Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2(11), 4379–4386 (2020)

    [117] Kong, L., Fu, X., Fan, X., Wang, Y., Qi, S., Wu, D., Tian, G., Zhong, W.H.: A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium-sulfur batteries. Nanoscale 11(39), 18090–18098 (2019)

    [118] Ahmed Babar, A., Zhao, X., Wang, X., Yu, J., Ding, B.: One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J. Colloid Interface Sci. 577, 207–216 (2020)

    [119] Wang, Z., Ma, Q., Dong, X., Li, D., Xi, X., Yu, W., Wang, J., Liu, G.: Novel electrospun dual-layered composite nanofibrous membrane endowed with electricity-magnetism bifunctionality at one layer and photoluminescence at the other layer. ACS Appl. Mater. Interfaces 8(39), 26226–26234 (2016)

    [120] Oh, Y.S., Jung, G.Y., Kim, J.H., Kim, J.H., Kim, S.H., Kwak, S.K., Lee, S.Y.: Janus-faced, dual-conductive/chemically active battery separator membranes. Adv. Funct. Mater. 26(39), 7074–7083 (2016)

    [121] Liang, C., He, J., Zhang, Y., Zhang, W., Liu, C., Ma, X., Liu, Y., Gu, J.: MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445 (2022)

    [122] Rodríguez-Fabià, S., Chinga-Carrasco, G.: Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling. J. Bioresour. Bioprod. 7(3), 161–172 (2022)

    [123] Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y., Xiao, H.: Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5(1), 1–15 (2020)

    [124] Kelly, T.L., Gao, T., Sailor, M.J.: Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv. Mater. 23(15), 1776–1781 (2011)

    [125] Zhang, J., Yan, Z., Ouyang, J., Yang, H., Chen, D.: Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red. Appl. Clay Sci. 157, 76–85 (2018)

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Advanced functional nanofibers: strategies to improve performance and expand functions[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200
    Download Citation