• Advanced Photonics
  • Vol. 4, Issue 3, 035002 (2022)
Juan Wei1, Yangyang Jiang1, Chenyuan Liu1, Jiayu Duan1, Shanying Liu1, Xiangmei Liu1, Shujuan Liu1, Yun Ma1、*, and Qiang Zhao1、2、*
Author Affiliations
  • 1Nanjing University of Posts and Telecommunications, Institute of Advanced Materials and Institute of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Nanjing, China
  • 2Nanjing University of Posts and Telecommunications, College of Electronic and Optical Engineering and Microelectronics and College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.4.3.035002 Cite this Article Set citation alerts
    Juan Wei, Yangyang Jiang, Chenyuan Liu, Jiayu Duan, Shanying Liu, Xiangmei Liu, Shujuan Liu, Yun Ma, Qiang Zhao. Organic room-temperature phosphorescent polymers for efficient X-ray scintillation and imaging[J]. Advanced Photonics, 2022, 4(3): 035002 Copy Citation Text show less
    References

    [1] Q. Chen et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).

    [2] H. Zhang et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater., 33, 2102529(2021).

    [3] Y. M. Yang et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light: Sci. Appl., 7, 88(2018).

    [4] J. Perego et al. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics, 15, 393-400(2021).

    [5] B. G. Durie et al. High-resolution X-ray luminescence extension imaging. Science, 190, 1093-1095(1975).

    [6] X. Ou et al. High-resolution X-ray luminescence extension imaging. Nature, 590, 410-415(2021).

    [7] W. Zhu et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Sci. Appl., 9, 112(2020).

    [8] Y. Zou et al. Nanopolymersomes with an ultrahigh iodine content for high-performance X-ray computed tomography imaging in vivo. Adv. Mater., 29, 1603997(2017).

    [9] Y. He et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics, 15, 36-42(2021). https://doi.org/10.1038/s41566-020-00727-1

    [10] N. Gustavsson et al. Correlative optical photothermal infrared and X-ray fluorescence for chemical imaging of trace elements and relevant molecular structures directly in neurons. Light: Sci. Appl., 10, 151(2021).

    [11] P. Pei et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol., 16, 1011-1018(2021).

    [12] M. Zhang et al. Metal halide scintillators with fast and self-absorption-free defect-bound excitonic radioluminescence for dynamic X-ray imaging. Adv. Funct. Mater., 31, 2007921(2021).

    [13] M. Zhuravleva et al. Praseodymium valence determination in Lu2SiO5, Y2SiO5 and Lu3Al5O12 scintillators by X-ray absorption spectroscopy. Appl. Phys. Lett., 101, 101902(2012).

    [14] Y. X. Zhuang et al. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Sci. Appl., 10, 132(2021). https://doi.org/10.1038/s41377-021-00575-w

    [15] H. Wei et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics, 10, 333-339(2016).

    [16] M. X. Chen et al. Organic semiconductor single crystals for X-ray imaging. Adv. Mater., 33, 2104749(2021).

    [17] X. Chen et al. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev., 48, 3073-3101(2019).

    [18] H. X. Meng et al. Highly emissive and stable five-coordinated manganese (II) complex for X-ray imaging. Laser Photonics Rev., 15, 2100309(2021).

    [19] X. Wang et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator. ACS Energy Lett., 7, 10-16(2022).

    [20] L. L. Wang et al. Ultra-stable CsPbBr3 perovskite nanosheets for X-ray imaging screen. Nano-Micro Lett., 11, 52(2019). https://doi.org/10.1007/s40820-019-0283-z

    [21] S. Cho et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light: Sci. Appl., 9, 156(2020).

    [22] J. X. Wang et al. Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter, 5, 253(2022).

    [23] M. Baroncini et al. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun., 53, 2081(2017).

    [24] S. Hirata et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater., 23, 3386-3397(2013).

    [25] Z. Y. Yang et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem. Int. Ed., 55, 2181-2185(2016).

    [26] O. Bolton et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem., 3, 205-210(2011).

    [27] J. B. Birks. Semi-empirical calculation of quenching factor for scintillators: new results. Proc. Phys. Soc., 64, 874(1951).

    [28] B. Fraboni et al. Radiation detectors: ionizing radiation detectors based on solution-grown organic single crystals. Adv. Funct. Mater., 26, 2276-2291(2016).

    [29] X. Wang et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics, 15, 187-192(2021).

    [30] W. B. Ma et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater., 21, 210-216(2021).

    [31] S. Garain et al. Arylene diimide phosphors: aggregation modulated twin room temperature phosphorescence from pyromellitic diimides. Angew. Chem. Int. Ed., 133, 12431-12435(2021).

    [32] X. Ma et al. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed., 57, 10854-10858(2018).

    [33] X. Y. Dou et al. Color-tunable excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers. Adv. Mater., 32, 2004768(2020).

    [34] N. Gan et al. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater., 28, 1802657(2018).

    [35] M. M. Fang et al. Recent advances in purely organic room temperature phosphorescence polymer. J. Polym. Sci., 37, 383-393(2019).

    [36] T. Zhang et al. Molecular engineering for metal-free amorphous materials with room-temperature phosphorescence. Angew. Chem., Int. Ed., 59, 11206(2020).

    [37] P. Alam et al. Two are better than one: a design principle for ultralong-persistent luminescence of pure organics. Adv. Mater., 32, 2001026(2020).

    [38] G. Chen et al. Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals. J. Mater. Chem. C, 7, 14535-14542(2019).

    [39] G. Chen et al. Photophysical tuning of organic ionic crystals from ultralong afterglow to highly efficient phosphorescence by variation of halides. J. Phys. Chem. Lett., 9, 6305-6311(2018).

    [40] P. F. She et al. Lifetime-tunable organic persistent room-temperature phosphorescent salts for large-area security printing. Sci. China Mater., 64, 1485-1494(2021).

    [41] P. F. She et al. Controllable photoactivated organic persistent room-temperature phosphorescence for information encryption and visual temperature detection. Cell Rep. Phys. Sci., 2, 100505(2021).

    [42] J. Yuan et al. Activating intersystem crossing and aggregation coupling by CN-substitution for efficient organic ultralong room temperature phosphorescence. J. Phys. Chem. C, 124, 10129-10134(2020).

    [43] S. Kee et al. Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater., 28, 8625-8631(2016).

    [44] S. Grimme et al. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456-1465(2011).

    [45] S. Grimme et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104(2010).

    [46] F. Neese. The ORCA program system. WIREs Comput. Mol. Sci., 2, 73-78(2012).

    [47] F. Neese. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci., 8, e1327(2018).

    [48] T. Lu et al. A multifunctional wavefunction analyzer. J. Comput. Chem., 33, 580-592(2012).

    [49] W. Humphrey et al. VMD: visual molecular dynamics. J. Mol. Graphics, 14, 33-38(1996).

    Juan Wei, Yangyang Jiang, Chenyuan Liu, Jiayu Duan, Shanying Liu, Xiangmei Liu, Shujuan Liu, Yun Ma, Qiang Zhao. Organic room-temperature phosphorescent polymers for efficient X-ray scintillation and imaging[J]. Advanced Photonics, 2022, 4(3): 035002
    Download Citation