• Infrared Technology
  • Vol. 43, Issue 4, 301 (2021)
Yang REN, Junbin LI, Gang QIN, Jin YANG, Yanhui LI, Xuchang ZHOU, Chunzhang YANG, Chao CHANG, Jincheng KONG*, and Dongsheng LI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-II Superlattice Materials Grown by MBE[J]. Infrared Technology, 2021, 43(4): 301 Copy Citation Text show less
    References

    [1] Sai-Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653.

    [2] Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240.

    [3] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.

    [4] Mailhiot C, Smith D L. Electronic structure of (001) and (111) growth axis InAs-Ga1-xInxSb strained-layer superlattices[J]. J. Vac. Sci. Technol. B., 1987, 5(4): 1268-1273.

    [5] Chow D H, MilesR H, Sderstrm J R, et al. Growth and characterization of InAs-Ga1-xInxSb strained-layer superlattices[J]. Applied Physics Letters, 1990, 56(15): 1418-1420.

    [6] YANG M J, Bennett B R. InAs/GaSb infrared photovoltaic detector at 77 K[J]. Electronics Letters, 1994, 30(20): 1710-1711.

    [7] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/ Ga1-xInxSb superlattice infrared photodiodes[J]. Applied Physics Letters, 1997, 71(22): 3251-3253.

    [8] Manijeh Razeghi, Yajun Wei, Junjik Bae, et al. Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs[A]. Proc. of SPIE[C]//2003, 5246: 501-511.

    [9] Razeghi M, Wei Y, Hood A, et al. Type II superlattice photodetectors for MWIR to VLWIR focal plane arrays[C]//Proc. of SPIE, 2006, 6206: 62060N.

    [10] Robert Rehm, Martin Walther, Johannes Schmitz, et al. 2nd and 3rd generation thermal imagers based on type-II superlattice photodiodes [C]//Proc. of SPIE, 2006, 6294: 6294041-6294047.

    [11] Rodriguez J B, Plis E, Bishop & G, et al. nBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4): 043514.

    [12] Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-II InAs∕GaSb strain layer superlattice detector with nBn design[J]. Applied Physics Letters, 2008, 92(18): 183502.

    [13] Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of 1 k×1 k long-wave and mid-wave superlattice infrared focal plane array [C]//SPIE, 2010, 7808: 78080201-78080206.

    [14] HUANG K W, Haddadi A, CHEN G, et al. Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance[J]. Optics Letters, 2011, 36(13): 2560-2.

    [15] Gautam N, Naydenkov M, Myers S, et al. Three color infrared detector using InAs/GaSb superlattices with unipolar barriers[J]. Appl. Phys. Lett. 2011, 98: 121106.

    [16] Edward Kwei-wei Huang, Manijeh Razeghi. World’s first demonstration of type-II superlattice dual band 640×512 LWIR focal plane array[C]//Proc. of SPIE, 2012, 8268: 82680Z.

    [17] Razeghi M, Haddadi A, Hoang A M, et al. High-performance bias-selectable dual-band mid-/long -wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 87040S.

    [18] Hoang A M, Dehzangi A, Adhikary S, et al. High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices[J]. Rep, 2016, 6: 24144.

    [19] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of applied physics, 2009, 105(9): 4.

    [20] Mir R N, Frensley W R. Electrical design of InAs-Sb/GaSb superlattices for optical detectors using full band structure sp3s* tight-binding method and Bloch boundary conditions[J]. Journal of Applied Physics, 2013, 114(15): 153706.

    [21] Nguyen B M, Bogdanov S, Pour S A, et al. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 183502.

    [22] WEI Y, Razeghi M, Brown G J, et al. Modeling type-II InAs/GaSb superlattices using empirical tight-binding method: new aspects[C]//Quantum Sensing and Nanophotonic Devices, International Society for Optics and Photonics, 2004, 5359: 301-309.

    [23] Rogalski A. New material systems for third generation infrared detectors[C]//Ninth International Conference on Correlation Optics, International Society for Optics and Photonics, 2009, 7388: 73880J.

    [24] Tobin S P, Hutchins M A, Norton P W. Composition and thickness control of thin LPE HgCdTe layers using x-ray diffraction[J]. Journal of Electronic Materials, 2000, 29(6): 781-791.

    [25] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.

    [26] Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13.

    [27] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/Ga1.xInxSb superlattice infrared photodiodes[J]. Applied physics letters, 1997, 71(22): 3251-3253.

    [29] Yano M, Yokose H, Iwai Y, et al. Surface-reaction of III-V compound semiconductors irradiated by As and Sb molecular-beams[J]. J. Cryst Growth, 1991, 111(1-4): 609.

    [30] Twigg M E, Bennett B R, Thibado P M, et al. Interfacial disorder in InAs/GaSb superlattices[J]. Philosophical Magazine A, 1998, 77(1): 7-30.

    [31] Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3-4): 301-308.

    [32] Chow D H, Miles R H, Hunter A T. Effects of interface Stoichiometry on the structural and electronic-properties of Ga1.xInxSb/InAs superlattices [J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-91.

    [33] WANG M W, Collins D A, McGill T C, et al. Ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11(4): 1418-22.

    [34] Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737.

    [35] Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1. xInxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.

    [36] Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/GaInSb Superlattices[J]. Appl. Phys. Lett. 1992, 61(2): 207-209.

    [37] Youngdale E R, Meyer J R, Hoffman C A, et al. Recombination lifetime in InAs-GaInSb superlattices[J]. J. Vac. Sci. Technol. B, 1994, 12(2): 1129-1135.

    [38] Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580.

    [39] Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429.

    [40] Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150(1): 858-862.

    [41] Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices II[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502.

    [42] Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb [J]. Semiconductor Science and Technology, 1996, 11(5): 823-6.

    [43] Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1?xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399.

    [44] Steinshnider J, Weimer M, Kaspi R, et al. Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy[J]. Physical Review Letters, 2000, 85(14): 2953-2956.

    [45] Steinshnider J, Harper J, Weimer M, et al. Origin of antimony segregation in GaInSb/InAs strained-layer superlattices[J]. Physical Review Letters, 2000, 85(21): 4562-4565.

    [46] Feenstra R M, Collins D A, Mcgill T C, et al. Scanning tunneling microscopy of InAs/GaSb superlattices with various growth conditions[J]. Superlattices and Microstructures, 1994, 15(2): 215-220.

    [47] Nosho B Z, Bennett B R, Whitman L J, et al. Effects of As2 versus As4 on InAs/GaSb heterostructures: As-for-Sb exchange and film stability[J]. Journal of Vacuum Science & Technology B, 2001, 19(4): 1626-1630.

    [48] Nosho B Z, Barvosacarter W, Yang M J, et al. Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures[J]. Surface Science, 2000, 465(3): 361-371.

    [49] Plis E, Khoshakhlagh A, Myers S, et al. Molecular beam epitaxy growth and characterization of type-II InAs/GaSb strained layer superlattices for long-wave infrared detection[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(3): C3G13-C3G18.

    [50] WEI Y J, Razeghi M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316.

    [51] Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Opto-Electronics Review, 2006, 14(1): 71-7.

    [52] Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2010, 96(2): 021904.

    [53] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: I. Misfit dislocations[J]. Journal of Crystal Growth, 1974, 27: 118-125.

    [54] Fritz I J, Picraux S T, Dawson L R, et al. Dependence of critical layer thickness on strain for InxGa1?xAs/GaAs strained-layer superlattices[J]. Applied Physics Letters, 1985, 46(10): 967-969.

    [55] Razeghi M, WEI Y, GIN A, et al. High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays[J]. Proceedings of SPIE, 2005, 5783: 86-97.

    [56] WEI Y, Hood A, Yau H, et al. High-performance type-II InAs/GaSb superlattice photodiodes with cutoff wavelength around 7 ?m[J]. Applied Physics Letters, 2005, 86(9): 091109.

    [57] Haugan H J, Szmulowicz F, Mahalingam K, et al. Short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Applied Physics Letters, 2005, 87(26): 261106.

    [58] ZHANG X, Ryou J, Dupuis R D, et al. Improved surface and structural properties of InAs?GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces[J]. Applied Physics Letters, 2007, 90(13): 131110.

    [59] Sullivan G J, Ikhlassi A, Bergman J, et al. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(3): 1144-1148.

    [60] Waterman J R, Shanabrook B V, Wagner R J, et al. The effect of interface bond type on the structural and optical properties of GaSb/InAs superlattices[J]. Semiconductor Science and Technology, 1993, 8(1S): S106.

    [61] XIE Q, Van Nostrand J E, Brown J L, et al. Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure[J]. J. Appl. Phys., 1999, 86(1): 329-37.

    [62] Khoshakhlagh A, Plis E, Myers S, et al. Optimization of InAs/GaSb type-II superlattice interfaces for long-wave (~8 m) infrared detection[J]. Journal of Crystal Growth, 2009, 311(7): 1901-1904.

    [63] ZHONG M, Steinshnider J, Weimer M, et al. Combined x-ray diffraction/scanning tunneling microscopy study of segregation and interfacial bonding in type-II heterostructures[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1593-1597.

    [64] Plis E, Annamalai S, Posani K T, et al. Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces[J]. J. Appl. Phys., 2006, 100(1): 4.

    [65] Horikoshi Y, Kawashima M, Yamaguchi H. Migration-enhanced epitaxy of GaAs and AlGaAs[J]. Japanese Journal of Applied Physics, 1988, 27(part 1): 169-179.

    [66] Gadaleta C, Scamarcio G, Fuchs F, et al. Influence of the interface bond type on the far-infrared reflectivity of InAs/GaSb superlattices[J]. Journal of Applied Physics, 1995, 78(9): 5642-5644.

    [67] Jasik A, Sankowska I, Pier.cinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103.

    [69] Guo Jie, Sun Wei-Guo, Peng Zhen-Yu, et al. Interfaces in InAs/GaSb superlattices grown by molecular beam epitaxy[J]. Chinese Physics Letters, 2009, 26(4): 047802.

    [71] ZHANG Y, MA W, CAO Y, et al. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1475-1479.

    [72] WEI Y, MA W, ZHANG Y, et al. High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 512-515.

    [73] Twigg M E, Bennett B R, Shanabrook B V, et al. Interfacial roughness in InAs/GaSb superlattices[J]. Applied Physics Letters, 1994, 64(25): 3476-3478.

    REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-II Superlattice Materials Grown by MBE[J]. Infrared Technology, 2021, 43(4): 301
    Download Citation