• Frontiers of Optoelectronics
  • Vol. 6, Issue 2, 180 (2013)
Shui ZHAO1, Ping LU1、2、*, Li CHEN1, Deming LIU2, and Jiangshan ZHANG3
Author Affiliations
  • 1National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0312-3 Cite this Article
    Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Frontiers of Optoelectronics, 2013, 6(2): 180 Copy Citation Text show less
    References

    [1] Li D J, Du G G. The recent research progress of Tm3+-doped fiber lasers. Laser Technology, 2007, 31(5): 540-543 (in Chinese)

    [2] McAleavey F J, MacCraith B D, O’Gorman J, Hegarty J. Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing. Fiber and Integrated Optics, 1997, 16(4): 355-368

    [3] Tang Y L, Xu L, Yang Y, Xu J Q. High-power gain-switched Tm3+-doped fiber laser. Optics Express, 2010, 18(22): 22964-22972

    [4] Wienke A, Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D. Fiber based dispersion management in an ultrafast thulium-doped fiber laser and external compression with a normal dispersive fiber. In: Proceedings of Advanced Solid-State Photonics. San Diego: OSA Technical Digest, 2012, AT4A.26

    [5] Geng J H, Wang Q, Smith J, Luo T, Amzajerdian F, Jiang S. Allfiber Q-switched single-frequency Tm-doped laser near 2 μm. Optics Letters, 2009, 34(23): 3713-3715

    [6] Wang Q, Geng J, Luo T, Jiang S. Mode-locked 2 μm laser with highly thulium-doped silicate fiber. Optics Letters, 2009, 34(23): 3616-3618

    [7] Geng J H, Wang Q, Luo T, Jiang S B, Amzajerdian F. Singlefrequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber. Optics Letters, 2009, 34(22): 3493-3495

    [8] Shen Y H, Zhao W Z, He J L, Sun T, Grattan K T V. Fluorescence decay characteristic of Tm-doped YAG crystal fiber for sensor applications, investigated from room temperature to 1400°C. IEEE Sensors Journal, 2003, 3(4): 507-512

    [9] Moulton P F, Rines G A, Slobodtchikov E V, Wall K F, Frith G, Samson B, Carter A L G. Tm-doped fiber lasers: fundamentals and power scaling. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(1): 85-92

    [10] He X, Fang X, Liao C, Wang D N, Sun J. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity. Optics Express, 2009, 17(24): 21773-21781

    [11] Sun J Q, Yuan X H, Zhang X L, Huang D X. Single-longitudinalmode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers. Optics Communications, 2006, 267(1): 177-181

    [12] Chang D I, Guy M J, Chernikov S V, Taylor J R, Kong H J. Singlefrequency erbium fibre laser using the twisted-mode technology. Electronics Letters, 1996, 32(19): 1786-1787

    [13] Kaneda Y, Spiegelberg C, Geng J H, Hu Y D, Luo T, Wang J F, Jiang S B. 200-mw, narrow-linewidth 1064.2-nm Yb-doped fiber laser. In: Proceedings of Lasers and Electro-Optics, CLEO. 2004, 2: Cth03:l-2

    [14] Yang J, Qu R G, Sun G Y, Geng J X, Cai H W, Fang Z J. Suppression of mode competition in fiber lasers by using a saturable absorber and a fiber ring. Chinese Optics Letters, 2006, 4(7): 410-412

    [15] Frisken S J. Transient Bragg reflection gratings in erbium-doped fiber amplifiers. Optics Letters, 1992, 17(24): 1776-1778

    [16] Horowitz M, Daisy R, Fischer B, Zyskind J L. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing. Optics Letters, 1994, 19(18): 1406-1408

    [17] Yin F F, Yang S G, Chen H W, Chen M H, Xie S Z. Tunable singlelongitudinal-mode Ytterbium all fiber laser with saturable-absorberbased auto-tracking filter. Optics Communications, 2012, 285(10-11): 2702-2706

    [18] He X Y, Wang D N. Tunable and switchable dual-wavelength single-longitudinal-mode Erbium-doped fiber lasers. Journal of Lightwave Technology, 2011, 29(6): 842-849

    [19] Kishi N, Yazaki T. Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning. IEEE Photonics Technology Letters, 1999, 11(2): 182-184

    [20] Horowitz M, Daisy R, Fischer B, Zyskind J L. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing. Optics Letters, 1994, 19(18): 1406-1408

    [21] Fleming S, Whitley T. Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics, 1996, 32(7): 1113-1121

    [22] Desurvire E. Study of the complex atomic susceptibility of Erbiumdoped fiber amplifiers. Journal of Lightwave Technology, 1990, 8(10): 1517-1527

    [23] Kashyap R. Fiber Bragg Gratings. SanDiego: Academic press, l999 24. Othonos A, Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Norwood, MA: Artech House, 1999

    Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Frontiers of Optoelectronics, 2013, 6(2): 180
    Download Citation