• Journal of Advanced Dielectrics
  • Vol. 11, Issue 4, 2150022 (2021)
[in Chinese]1、2、* and [in Chinese]3
Author Affiliations
  • 1Nanotechnology Research Center Electrical Engineering Dept. Faculty of Energy Engineering Aswan University, Aswan, Egypt
  • 2Electrical Engineering Dept. College of Engineering and Information Technology Buraydah Colleges, KSA
  • 3Hydro Power Plant Generation Company Nag Hammadi Hydro Power Plant, Qena, Egypt
  • show less
    DOI: 10.1142/s2010135x21500223 Cite this Article
    [in Chinese], [in Chinese]. Assessment of dielectric strength and partial discharges patterns in nanocomposites insulation of single-core power cables[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150022 Copy Citation Text show less
    References

    [1] G. C. Crichton, P. W. Karlsson and A. Pedersen, Partial discharges in ellipsoidal and spherical voids, IEEE Trans. Electr. Insul. 24(2), 335 (1989).

    [2] R. J. Van Brunt, Physics and chemistry of partial discharges and corona, IEEE Trans. Dielectr. Electr. Insul. 1(5), 761 (1994).

    [3] C. Stancu, P. V. Notingher, F. Ciuprina et al., Computation of the electric field in cable insulation in the presence of water trees and space charge, IEEE Trans. Indus. Appl. 45(1), 30 (2009).

    [4] A. Nosseir, Calculation of discharge inception voltage due to the presence of voids in power cables, IEEE Trans. Electr. Insul. EI-14(2), 117 (1979).

    [5] A. Thabet and Y. A. Mubarak, The effect of cost-fewer nanoparti-cles on the electrical properties of polyvinyl chloride, Electr. Eng. J. 99(2), 625 (2017).

    [6] R. C. Smith, C. Liang, M. Landry et al., The mechanisms lead-ing to the useful electrical properties of polymer nanodielectrics, IEEE Trans. Dielectr. Electr. Insul. 15(1), 187 (2008).

    [7] A. Thabet and A. A. Ebnalwaled, Improvement of surface energy properties of PVC nanocomposites for enhancing electrical appli-cations, J. Int. Meas. Confed. 110, 78 (2017).

    [8] S. Li, D. Xie and Q. Lei, Understanding insulation failure of nan-odielectrics: Tailoring carrier energy, High Volt. 5(6), 643 (2020).

    [9] A. Thabet, M. Allam and S. A. Shaaban, Investigation on enhanc-ing breakdown voltages of transformer oil nanofluids using multi-nanoparticles technique, IET Gener. Transm. Distrib. J. 12(5), 1171 (2018).

    [10] A. Thabet, N. Salem and E. E. M. Mohamed, Modern insulations for power cables using multi-nanoparticles technique, Int. J. Electr. Eng. Inform. 10(2), 271 (2018).

    [11] S. Diaham, Modulation of the dielectric breakdown strength in polyimide nanocomposites by deep traps tailoring in interphase regions, IEEE Trans. Dielectr. Electr. Insul. 26(1), 247 (2019).

    [12] J. Xue, Y. Li, J. Dong et al., Surface charge transport behavior and flashover mechanism on alumina/epoxy spacers coated by SiC/ epoxy composites with varied SiC particle size, J. Phys. D: Appl. Phys. 53, 155503 (2020).

    [13] D. Ai, H. Li, Y. Zhou et al., Tuning nanofillers in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage, Adv. Energy Mater. 28, 1903881 (2020).

    [14] A. Thabet and N. Salem, Experimental progress in electrical properties and dielectric strength of polyvinyl chloride thin films under thermal conditions, Trans. Electr. Electron. Mater. J. 21(1), 1 (2019).

    [15] Nexans Energy Networks Company, 6-36 kV Medium Voltage underground power cables XLPE insulated cables catalogue, www.nexans.co.uk.

    [16] M. Alsharif, P. A. Wallace, D. M. Hepburn and C. Zhou, FEM modelling of electric field and potential distributions of MV XLPE cables containing void defect, COMSOL Conf. (Milan, 2012), pp. 1–4.

    [17] VEGA Grieshaber KG, List of dielectric constants catalogue, www.vega.com.

    [18] S. Patel, S. Chaudhari and M. Patel, Analysis of electric stress in high voltage cables containing voids, Int. J. Eng. Res. Technol. 3(3), 1443, 2014.

    [19] M. Todd and F. Shi, Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging mate-rials, IEEE Trans. Compon Packag. Technol. 26(3), 667 (2003).

    [20] A. Thabet, Y. Mobarak, N. Salem and A. El-Noby, Performance comparison of selection nanoparticles for insulation of three core belted power cables, Inter. J. Electri. Comput. Eng. 10(3), 2779 (2020).

    [21] A. T. Mohamed, Design and investment of high voltage nanodi-electrics (IGI Global, 2020).

    [22] K. K. Karkkainen, A. H. Sihvola and K. I. Nikoskinen, Effec-tive permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Remote Sens. 38, 1303 (2000).

    [23] A. Thabet and N. Salem, Optimizing dielectric characteristics of electrical materials using multi-nanoparticles technique, IEEE, Int. Middle East Power System Conf. (MEPCON) (Menofia, Egypt, 2017), pp. 220–225.

    [24] G. Polizos, E. Tuncer, I. Sauers and K. L. More, Properties of a nanodielectric cryogenic resin, Appl. Phys. Lett. 96(15), 152903 (2010).

    [25] N. Tagami, M. Hyuga, Y. Ohki, T. Tanaka, T. Imai, M. Harada and M. Ochi, Comparison of dielectric properties between epoxy composites with nanosized clay fillers modified by primary amine and tertiary amine, IEEE Dielectr. Electr. Insul. Trans. 17(1), 214 (2010).

    [26] M. Todd and F. Shi, Characterizing the interphase dielectric con-stant of polymer composite materials: Effect of chemical coupling agents, J. Appl. Phys. 94, 4551 (2003).

    [27] Y. Yi and M. Sastry, Analytical approximation of the two-dimensional percolation threshold for fields of overlapping ellipses, Phys. Rev. E 66, 066130 (2002).

    [28] A. Thabet, Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials, Electr. Eng. 99(2), 487 (2017).

    [29] A. Thabet and Y. A. Mobarak, Dielectric characteristics of new nano-composite industrial materials, Int. Conf. High Voltage Engi-neering and Application “ICHVE” (New Orleans, USA, 2010), pp. 568–571.

    [30] A. Thabet and N. Salem, Experimental investigation on dielectric losses and electric field distribution inside nanocomposites insu-lation of three-core belted power cables, Adv. Indus. Eng. Polym. Res. 4(1), 1857 (2021).

    [31] A. T. Mohamed, Emerging Nanotechnology Applications in Elec-trical Engineering (IGI Global 2021).

    [32] C. Jeffrey Brinker and G. W. Scherer, Sol-Gel Science: The Phys-ics Chemistry of Sol-Gel Processing (Academic Press, Inc., 1990).

    [33] L. Bois, F. Chassagneux, S. Parola and F. Bessueille, Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO–PPO–PEO, J. Solid-State Chem. 182, 1700 (2009).

    [34] H. N. Azlinaa, J. N. Hasnidawania, H. Norita and S. N. Surip, Synthesis of SiO2 nanostructures using sol-gel method, 5th Inter-national Science Congress & Exhibition APMAS2015, Vol. 129 (Lykia, Oludeniz, 2016), pp. 842–844.

    [35] B. Reddy, Advances in Nanocomposites — Synthesis, Charac-terization and Industrial Applications (Intech Open, 2011), pp. 323–340.

    [in Chinese], [in Chinese]. Assessment of dielectric strength and partial discharges patterns in nanocomposites insulation of single-core power cables[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150022
    Download Citation