• Frontiers of Optoelectronics
  • Vol. 11, Issue 1, 30 (2018)
Shaghik ATAKARAMIANS1、*, Tanya M.2、3, and Shahraam AFSHAR2、3
Author Affiliations
  • 1School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia
  • 2Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide SA 5005, Australia
  • 3Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes SA 5095, Australia
  • show less
    DOI: 10.1007/s12200-018-0762-8 Cite this Article
    Shaghik ATAKARAMIANS, Tanya M., Shahraam AFSHAR. Dipole-fiber system: from single photon source to metadevices[J]. Frontiers of Optoelectronics, 2018, 11(1): 30 Copy Citation Text show less
    References

    [1] Vahala K JOptical microcavities. Nature, 2003, 424(6950): 839–846

    [2] Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311

    [3] Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S. Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214

    [4] Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404

    [5] Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274

    [6] Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1–3): 231–243

    [7] Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136

    [8] Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658

    [9] Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908– 16913

    [10] Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511

    [11] Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901

    [12] Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706

    [13] Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90

    [14] Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483

    [15] Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31

    [16] Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924

    [17] Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983

    [18] Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194

    [19] Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810

    [20] Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4 (12): 2608–2620

    [21] Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87

    [22] Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978

    [23] Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro + Nano Materials, Devices, and Systems, 2015, 96683J

    [24] Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815

    [25] Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998

    [26] Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New Journal of Physics, 2012, 14 (9): 093033

    Shaghik ATAKARAMIANS, Tanya M., Shahraam AFSHAR. Dipole-fiber system: from single photon source to metadevices[J]. Frontiers of Optoelectronics, 2018, 11(1): 30
    Download Citation