• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751404 (2022)
Yan YUAN1、2, Anqi LIU1、2, and Lijuan SU1、2、*
Author Affiliations
  • 1School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
  • 2Key Laboratory of Precision Opto-Mechatronics Technology,Ministry of Education,Beijing 100191,China
  • show less
    DOI: 10.3788/gzxb20225107.0751404 Cite this Article
    Yan YUAN, Anqi LIU, Lijuan SU. Development Trends and Prospects of Snapshot Spectral Imaging Technology(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751404 Copy Citation Text show less
    Schematic of light field imaging spectroscopy
    Fig. 1. Schematic of light field imaging spectroscopy
    Schematic of image mapping spectroscopy
    Fig. 2. Schematic of image mapping spectroscopy
    Schematic of coded aperture snapshot spectral imaging
    Fig. 3. Schematic of coded aperture snapshot spectral imaging
    Schematic of snapshot hyperspectral imaging Fourier transform spectroscopy[23]
    Fig. 4. Schematic of snapshot hyperspectral imaging Fourier transform spectroscopy23
    Overview of the research status and development trend of snapshot spectral imaging technology
    Fig. 5. Overview of the research status and development trend of snapshot spectral imaging technology
    Principle of the 3DIS system[34]
    Fig. 6. Principle of the 3DIS system34
    Schematic of the snapshot hyperspectral light field imager[35]
    Fig. 7. Schematic of the snapshot hyperspectral light field imager35
    Schematic of the spectral-depth imaging system with high resolution[36]
    Fig. 8. Schematic of the spectral-depth imaging system with high resolution36
    Photograph of the spectral-depth imaging system using structured light[37]
    Fig. 9. Photograph of the spectral-depth imaging system using structured light37
    Schematic of the snapshot hyperspectral volumetric microscopy based on camera array[38]
    Fig. 10. Schematic of the snapshot hyperspectral volumetric microscopy based on camera array38
    Schematic of a snapshot hyperspectral light field imaging system using a single camera[40]
    Fig. 11. Schematic of a snapshot hyperspectral light field imaging system using a single camera40
    Schematic of the snapshot spectral-volumetric imaging system based on Fourier transform[41]
    Fig. 12. Schematic of the snapshot spectral-volumetric imaging system based on Fourier transform41
    Schematic of the compressive spectral integral imaging system[42]
    Fig. 13. Schematic of the compressive spectral integral imaging system42
    Schematic of the snapshot spectral-volumetric imaging system using a ToF camera[43]
    Fig. 14. Schematic of the snapshot spectral-volumetric imaging system using a ToF camera43
    Schematic of the coded aperture snapshot spectral depth imaging via depth from coded aberrations(CASSDI-DFA)[44]
    Fig. 15. Schematic of the coded aperture snapshot spectral depth imaging via depth from coded aberrations(CASSDI-DFA)44
    Schematic of the snapshot hyperspectral light field tomography[45]
    Fig. 16. Schematic of the snapshot hyperspectral light field tomography45
    Schematic of the snapshot hyperspectral-depth imaging system with diffractive optics[46]
    Fig. 17. Schematic of the snapshot hyperspectral-depth imaging system with diffractive optics46
    Schematic of high-resolution hyperspectral video acquisition with a hybrid camera system[54]
    Fig. 18. Schematic of high-resolution hyperspectral video acquisition with a hybrid camera system54
    Schematic of hybrid-resolution spectral video system[55]
    Fig. 19. Schematic of hybrid-resolution spectral video system55
    Schematic of the high-resolution panchromatic image acquisition method for SHIFT[57]
    Fig. 20. Schematic of the high-resolution panchromatic image acquisition method for SHIFT57
    Diagram of hyperspectral image super-resolution based on SRCNN[64]
    Fig. 21. Diagram of hyperspectral image super-resolution based on SRCNN64
    Diagram of hyperspectral image super-resolution based on SDCNN and SCT[65]
    Fig. 22. Diagram of hyperspectral image super-resolution based on SDCNN and SCT65
    Result of spectral image super-resolution[67]
    Fig. 23. Result of spectral image super-resolution67
    Diagram of the joint artifact correction and super-resolution network
    Fig. 24. Diagram of the joint artifact correction and super-resolution network
    TypeSpectral imaging technologyVolumetric imaging technology

    Spatial

    resolution

    Spectral resolutionTemporal resolutionReference
    Independent measurementCASSILaser scanning imaging\\5×10-4 frame/s34
    CASSILight field imaging380×380×9×92710 frame/s35
    MS-PPFStereo imaging1 920×1 0801650 frame/s36
    MS-PPFStructured light imaging409×2162517 frame/s37
    Coupled measurementFilter arrayLight field imaging617×528×303130 frame/s38
    IMSLight field imaging66×66×5×5405 frame/s40
    SHIFTLight field imaging110×110\15 frame/s41
    CASSIIntegral imaging300×400×213\42
    CASSIToF detector256×2568\43
    CASSIPhase modulation512×51212\44
    Grating dispersionLight field tomography270×270×4×436030 frame/s45
    DOEDOE2 824×4 24027\46
    Table 1. Comparison of different snapshot spectral volumetric imaging technologies
    Yan YUAN, Anqi LIU, Lijuan SU. Development Trends and Prospects of Snapshot Spectral Imaging Technology(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751404
    Download Citation