[1] LEVY M, OSGOOD R M, LIU R, et al.Fabrication of single-crystal lithium niobate films by crystal ion slicing[J].Applied Physics Letters, 1998, 73(16):2293-2295.
[2] TAUZIN A, DECHARM J, MADEIRA F, et al.3-inch single-crystal LiTaO3 films onto metallic electrode using smart cutTM technology[J].Electronics Letters, 2008, 44(13):822-824.
[3] SOLAL M, PASTUREAUD T, BALLANDRAS S, et al.Oriented lithium niobate layers transferred on 4″ [100] silicon wafer for RF SAW devices[C]//Munich, Germany:2002 IEEE International Ultrasonics Symposium Proceedings, 2002:131-134.
[4] PARK K D, ESASHI M, TANAKA S.Lithium-niobate-based surface acoustic wave device directly integrated on IC[C]//Orlando, USA:2011 IEEE International Ultrasonics Symposium, 2011: 1956-1959.
[5] RABIEI P, GUNTER P.Sub-micron thin films of lithium niobate single crystals prepared by crystal ion slicing and wafer bonding[C]//Baltimore, USA:Conference on Lasers and Electro-Optics 2005:1-3.
[6] POBERAJ G, HU Hui, SOHLER W, et al.Lithium niobate on insulator(LNOI) for micro-photonic devices[J].Laser Photonics Review, 2012, 6(4):488-503.
[7] GONG Songbin, SHI Lisha, PIAZZA G.High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 Thin film[C]//Montreal, Canada:2012 IEEE/MTT-S International Microwave Symposium Digest, 2012:1-3.
[8] MOULET J S, PIJOLAT M, DECHAMP J, et al.High piezoelectric properties in LiNbO3 transferred layer by the smart cutTM technology for ultra wide band BAW filter applications[C]//San Francisco, USA:2008 IEEE International Electron Devices Meeting, 2008:1-4.
[9] SADAKA M, RADU I, LAGAHE-BLANCHARD C, et al.Smart stackingTM and smart cutTM technologies for wafer level 3D integration[C]//Pavia, Italy:Proceedings of 2013 International Conference on IC Design & Technology (ICICDT), 2013:231-234.
[10] RADU I, NGUYEN B Y, GAUDIN G, et al.3D monolithic integration:Stacking technology and applications[C]//Leuven, Belgium:2015 International Conference on IC Design & Technology(ICICDT), 2015:1-3.
[11] CLAVELIER L, DEGUET C, DI CIOCCIO L, et al.Engineered substrates for future more moore and more than moore integrated devices[C]//San Francisco, USA:2010 International Electron Devices Meeting, 2010:261-264.
[12] REINHARDT A, BENAISSA L, DAVID J B, et al.Acoustic filters based on thin single crystal LiNbO3 films:Status and prospects [C]//Chicago, USA: 2014 IEEE International Ultrasonics Symposium, 2014:773-781.
[13] YAN Youquan, HUANG Kai, ZHOU Hongyan, et al.Wafer-Scale fabrication of 42° rotated Y-cut LiTaO3-on-insulator(LTOI) substrate for a SAW resonator[J].ACS Applied Electronic Materials, 2019, 1 (8):1660-1666.
[14] SIMOESA A Z, ZAGHETEA M A, STOJANOVIC B D, et al.LiNbO3 thin films prepared through polymeric precursor method [J].Materials Letters, 2003, 57(15):2333-2339.
[15] WERNBERG A A, BRAUNSTEIN G H, GYSLING H J.Improved solid phase epitaxial growth of lithium tantalate thin films on sapphire, using a two-step metalorganic chemical-vapor deposition process[J].Appl Phys Lett, 1993, 62(19):2649-2651.
[16] BRUEL M.Silicon on insulator material technology[J].Electronics Letters, 1995, 31(14):1201-1202.
[17] BRUEL M, ASPAR B, AUBERTON-HERV A J.Smart-cut:A new silicon on insulator material technology based on hydrogen implantation and wafer bonding[J].Jpn J Appl Phys, 1997, 36(3B):1636-1641.
[18] TAUZIN A, DECHAMP J, MADEIRA F, et al.3-inch single-crystal LiTaO3 films onto metallic electrode using smart cutTM technology[J].Electronics Letters, 2008, 44(13):822-824.
[19] LIU Weili, ZHAN Da, MA Xiaobo, et al.Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology[J].Journal of Vacuum Science & Technology B, 2008, 26 (1):206-208.
[20] GORISSE M, DROUIN A, SINQUIN Y, et al.Oriented single-crystal LiTaO3 thin film on silicon for high performances SAW components[C]//Kobe, Japan:2018 IEEE International Ultrasonics Symposium (IUS), 2018:1-4.
[21] BALLANDRAS S, COURJON E, BERNARD F, et al.New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and silicon[C]//Orlando, USA:2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum(EFTF/IFC), 2019:1-6.
[22] TIEGEL M C, MARTIN M L, LEHMBERG A K, et al.Crack and blister initiation and growth in purified iron due to hydrogen loading [J].Acta Materialia, 2016, 115:24-34.
[23] KADOTA M, TANAKA S.Solidly mounted resonator using shear horizontal mode plate wave in LiNbO3 plate[C]//New Orleans, USA:2016 IEEE International Frequency Control Symposium(IFCS), 2016:1-4.
[24] KADOTA M, ISHII Y, TANAKA S.Capability of LiTaO3/quartz HAL SAW resonators confirmed by simulation and measurement[C]//Orlando, USA:2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 2019:1-4.
[25] NAUMENKO N F.Optimization of LiNbO3-quartz substrate for high-frequency wideband SAW devices using longitudinal leaky waves [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(7): 1485-1491.
[26] DOGHECHEA E, REMIENS D, SHIKATA S.High-frequency surface acoustic wave devices based on LiNbO3 diamond multilayered structure[J]. Applied Physics Letters, 2005, 87:1-3.
[27] TAKAIT, IWAMOTO H, TAKAMINE Yuichi, et al.I.H.P.SAW technology and its application to microacoustic components[C]//Washington, DC, USA:2017 IEEE International Ultrasonics Symposium(IUS), 2017:1-8.
[28] IWAMOTO H, TAKAI T, TAKAMINE Y, et al.A novel SAW resonator with incredible high-performances[C]//Kyoto, Japan:2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), 2017:1-2.
[29] TAKAI T, IWAMOTO H, TAKAMINE Y, et al.High-performance SAW resonator on new multilayered substrate using LiTaO3 crystal[J].2017 IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64(9):1382-1389.
[30] TONAMIS, NISHIKATA A, SHIMIZU Y.Characteristics of leaky surface acoustic waves propagating on LiNbO3 and LiTaO3 substrates[J].Jpn J Appl Phys, 1995, 34:2664-2667.
[31] MAKKONEN T, PLESSKY V P, STEICHEN W, et al.Surface-acoustic-wave devices for the 2.5~5 GHz frequency range based on longitudinal leaky waves[J].Applied Physics Letters, 2003, 82(19):3351-3353.
[32] KIMURA T, KISHIMOTO Y, OMURA M, et al.3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement[J].Jpn J Appl Phys, 2018, 57:1-4.
[33] KIMURAT, OMURA M, KISHIMOTO Y, et al.A high velocity and wideband SAW on a thin LiNbO3 plate bonded on a Si substrate in the SHF range[C]//Glasgow, United Kingdom:2019 IEEE International Ultrasonics Symposium(IUS), 2019:1239-1248.
[34] ZHANG Shibin, LU Ruochen, ZHOU Hongyan, et al.Figure-of-merit enhancement for laterally vibrating lithium niobate MEMS resonators[J].IEEE Transactions on Microwave Theory and Techniques, 2020, 68(9):3653-3666.
[35] GONG Songbin, PIAZZA G.Surface acoustic wave devices using lithium niobate on silicon carbide [J].IEEE Transactions on Electron Devices, 2013, 60(11):3888-3894.