• Advanced Photonics
  • Vol. 2, Issue 4, 046001 (2020)
Jianhao Zhang1、*, Vincent Pelgrin1, Carlos Alonso-Ramos1, Laurent Vivien1, Sailing He2, and Eric Cassan1、*
Author Affiliations
  • 1Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
  • 2Zhejiang University, Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.2.4.046001 Cite this Article Set citation alerts
    Jianhao Zhang, Vincent Pelgrin, Carlos Alonso-Ramos, Laurent Vivien, Sailing He, Eric Cassan. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides[J]. Advanced Photonics, 2020, 2(4): 046001 Copy Citation Text show less
    References

    [1] G. P. Agrawal. Nonlinear Fiber Optics(1989).

    [2] J. Hansryd et al. Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron., 8, 506-520(2002).

    [3] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [4] M. C. Borghi et al. Nonlinear silicon photonics. J. Opt., 19, 093002(2017).

    [5] M. A. Foster et al. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [6] A. C. Turner-Foster et al. Frequency conversion over two-thirds of an octave in silicon nanowaveguides.. Opt. Express, 18, 1904-1908(2010).

    [7] X. Liu et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics, 4, 557-560(2010).

    [8] S. Zlatanovic et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 4, 561-564(2010).

    [9] X. Liu et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics, 6, 667-671(2012).

    [10] P. A. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [11] Y. Okawachi et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [12] T. Herr et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [13] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [14] A. G. Griffith et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2014).

    [15] V. Brasch et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [16] X. Xue et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light: Sci. Appl., 6, e16253(2017).

    [17] H. Guo et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [18] N. Singh et al. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light: Sci. Appl., 7, 17131(2018).

    [19] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [20] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [21] M. A. Foster et al. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 15, 12949-12958(2007).

    [22] A. B. Matsko et al. Clustered frequency comb. Opt. Lett., 41, 5102-5105(2016).

    [23] M. Haelterman, S. Trillo, S. Wabnitz. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett., 17, 745-747(1992).

    [24] N. L. B. Sayson et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701-706(2019).

    [25] S. Fujii et al. Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators. Opt. Lett., 44, 3146-3149(2019).

    [26] J. Yang et al. Coherent satellites in multispectral regenerative frequency microcombs. Commun. Phys., 3, 27(2020).

    [27] S.-W. Huang et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett, 114, 053901(2015).

    [28] B. Yao et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [29] A. Pasquazi et al. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [30] N. Picqué et al. Frequency comb spectroscopy.. Nat. Photonics, 13, 146-157(2019).

    [31] P. Feng et al. Dual-comb spectrally encoded confocal microscopy by electro-optic modulators. Opt. Lett., 44, 2919-2922(2019).

    [32] J. Zhang et al. Self-adaptive waveguide boundary for inter-mode four-wave mixing. IEEE J. Sel. Top. Quantum Electron., 26, 5100108(2020).

    [33] M. Eichenfield et al. Optomechanical crystals. Nature, 462, 78-82(2009).

    [34] F. Alpeggiani et al. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities. Appl. Phys. Lett., 107, 261110(2015).

    [35] A. Simbula et al. Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential. Appl. Phys. Lett., 2, 056102(2017).

    [36] J. M. Dudley et al. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135(2006).

    [37] V. E. Zakharov et al. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34, 62-69(1972).

    [38] I. V. Barashenkov et al. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E, 54, 5707-5725(1996).

    [39] K. Ikeda et al. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun., 30, 257-261(1979).

    [40] L. Lugiato et al. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).

    [41] L. Lugiato et al. From the Lugiato–Lefever equation to microresonator based soliton Kerr frequency combs. Trans. R. Soc. A, 376, 20180113(2018).

    [42] M. Haelterman et al. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun., 91, 401-407(1992).

    [43] A. B. Matsko et al. Mode-locked Kerr frequency combs. Opt. Commun., 36, 2845-2847(2011).

    [44] S. Coen et al. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790-1792(2013).

    [45] S. Coen et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).

    [46] T. Hansson et al. Dynamics of microresonator frequency comb generation: models and stability. Nanophotonics, 5, 231-243(2016).

    [47] M. R. E. Lamont et al. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Express, 38, 3478-3481(2013).

    [48] H. Guo et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [49] Y. K. Chembo et al. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett., 104, 103902(2010).

    [50] Y. K. Chembo et al. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A, 82, 033801(2010).

    [51] R. K. W. Lau et al. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett., 40, 2778-2781(2015).

    [52] A. D. Bristow et al. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett., 90, 191104(2007).

    [53] M. Först et al. High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators. Opt. Lett., 32, 2046-2048(2015).

    [54] S. Pearl et al. Three photon absorption in silicon for 2300–3300 nm. Appl. Phys. Lett., 93, 131102(2008).

    [55] F. Gholami et al. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett., 99, 081102(2011).

    [56] D. K. Schroder et al. Free carrier absorption in silicon. IEEE J. Solid-State Circuits, 13, 180-187(1978).

    [57] R. R. Vardanyana et al. Modeling free carrier absorption in silicon. J. Contemp. Phys., 47, 73-79(2012).

    [58] D. Ortega et al. Analysis of “quasi-modes” in periodic segmented waveguides. J. Lightwave Technol., 17, 369-375(1999).

    [59] R. Halir et al. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev., 9, 25-49(2015).

    [60] P. Cheben et al. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [61] X. Lu et al. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett., 105, 151104(2014).

    [62] K. McGarvey-Lechable, P. Bianucci. Bloch-Floquet waves in optical ring resonators. Phys. Rev. B., 97, 214204(2018).

    [63] G. Moille et al. Phased-locked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett., 43, 2772-2775(2018). https://doi.org/10.1364/OL.43.002772

    [64] Y. Guo et al. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photonics Res., 7, 1279-1286(2019).

    [65] J. S. Penadés et al. Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. Opt. Lett., 39, 5661-5664(2014).

    [66] J. S. Penadés et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express, 24, 22908-22918(2016).

    [67] H. Lin et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2018).

    [68] S. A. Miller et al. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    Jianhao Zhang, Vincent Pelgrin, Carlos Alonso-Ramos, Laurent Vivien, Sailing He, Eric Cassan. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides[J]. Advanced Photonics, 2020, 2(4): 046001
    Download Citation