• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 1, 12001 (2022)
Jian Gao1, Xichun Luo1、*, Fengzhou Fang2、3, and Jining Sun4
Author Affiliations
  • 1Centre for Precision Manufacturing, DMEM, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
  • 2State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, People’s Republic of China
  • 3Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin 4, Ireland
  • 4School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac3bb2 Cite this Article
    Jian Gao, Xichun Luo, Fengzhou Fang, Jining Sun. Fundamentals of atomic and close-to-atomic scale manufacturing: a review[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 12001 Copy Citation Text show less
    References

    [1] Fang F Z 2020 Atomic and close-to-atomic scale manufacturing: perspectives and measures Int. J. Extreme Manuf. 2 030201

    [2] Fang F Z 2020 On atomic and close-to-atomic scale manufacturing—development trend of manufacturing technology China Mech. Eng. 31 1009

    [3] Bajenescu T M I 2012 Challenges in nanotechnologies and nanomanufacturing processes Electroteh. Electron. Autom. 60 75

    [4] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C, Klimeck G and Simmons M Y 2012 A single-atom transistor Nat. Nanotechnol. 7 242-6

    [5] Cheng J Y, Fisher B L, Guisinger N P and Lilley C M 2017 Atomically manufactured nickel-silicon quantum dots displaying robust resonant tunneling and negative differential resistance npj Quantum Mater. 2 1-6

    [6] Khajetoorians A A, Wiebe J, Chilian B and Wiesendanger R 2011 Realizing all-spin-based logic operations atom by atom Science 332 1062-4

    [7] Huff T, Labidi H, Rashidi M, Livadaru L, Dienel T, Achal R, Vine W, Pitters J and Wolkow R A 2018 Binary atomic silicon logic Nat. Electron. 1 636-43

    [8] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 A single-atom quantum memory Nature 473 190-3

    [9] Fang F Z, Zhang N, Guo D, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

    [10] Xie W and Fang F Z 2020 Crystallographic orientation effect on cutting-based single atomic layer removal Front. Mech. Eng. 15 631-44

    [11] Xie W and Fang F Z 2019 Cutting-based single atomic layer removal mechanism of monocrystalline copper: atomic sizing effect Nanomanuf. Metrol. 2 241-52

    [12] Xie W and Fang F Z 2020 Rake angle effect in cutting-based single atomic layer removal J. Manuf. Process. 56 280-94

    [13] Mabuchi H 2002 The quantum-classical transition on trial Eng. Sci. 65 22-9

    [14] Herzenberg C 2007 Why our human-sized world behaves classically, not quantum-mechanically: a popular non-technical exposition of a new idea (arXiv:physics/0701155) [physics.gen-ph]

    [15] Campbell V E, Tonelli M, Cimatti I, Moussy J-B, Tortech L, Dappe Y J, Rivière E, Guillot R, Delprat S and Mattana R 2016 Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices Nat. Commun. 7 1-10

    [16] Cai Y, Chang W, Luo X and Qin Y 2017 Hydrophobicity of pyramid structures fabricated by micro milling 2017 World Congress on Micro and Nano Manufacturing pp 1-4

    [17] Shankar R 1994 Principles of Quantum Mechanics 2nd ed (New York: Springer) (https://doi.org/10.1007/978-1-4757-0576-8)

    [18] De Broglie L 1970 The reinterpretation of wave mechanics Found. Phys. 1 5-15

    [19] Sugimoto Y, Jelinek P, Pou P, Abe M, Morita S, Perez R and Custance O 2007 Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy Phys. Rev. Lett. 98 106104

    [20] Madou M J 2018 Fundamentals of Microfabrication and Nanotechnology, Three-volume Set (Boca Raton, FL: CRC Press) (https://doi.org/10.1201/9781315274164)

    [21] Miller D A B 2008 Quantum Mechanics for Scientists and Engineers (Cambridge, New York: Cambridge University Press) (https://doi.org/10.1017/CBO9780511813962)

    [22] Bennemann K 1965 Covalent bonding in diamond Phys. Rev. 139 A482

    [23] Akhmatov A S 1966 Molecular Physics of Boundary Friction vol 2108 (Jerusalem: Israel program for scientific translations)

    [24] DelRio F W, de Boer M P, Knapp J A, Reedy E D, Clews P J and Dunn M L 2005 The role of van der Waals forces in adhesion of micromachined surfaces Nat. Mater. 4 629-34

    [25] De Los Santos H 2003 Impact of the Casimir force on movable-dielectric RF MEMS varactors 2003 Third IEEE Conf. on Nanotechnology, 2003. IEEE-NANO 2003 vol 2 (IEEE) pp 900-3

    [26] Kittel C 2005 Introduction to Solid State Physics 8 (New York: Wiley)

    [27] Wang X, Ramírez-Hinestrosa S, Dobnikar J and Frenkel D 2020 The Lennard-Jones potential: when (not) to use it Phys. Chem. Chem. Phys. 22 10624-33

    [28] Enkhtaivan B, Sugimoto Y and Oshiyama A 2017 First-principles study of lateral atom manipulation assisted by structural relaxation of a scanning tip apex Phys. Rev. B 96 155417

    [29] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients Rev. Mod. Phys. 64 1045-97

    [30] Bullen D, Chung S-W, Wang X, Zou J, Mirkin C A and Liu C 2004 Parallel dip-pen nanolithography with arrays of individually addressable cantilevers Appl. Phys. Lett. 84 789-91

    [31] Kim H 2003 Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing J. Vac. Sci. Technol. B 21 2231-61

    [32] Yip W S and To S 2018 Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment Sustain. Mater. Technol. 16 38-46

    [33] Lüth H 2013 Quantum physics in the nanoworld Quantum Phys. Nanoworld Schrodingers Cat Dwarfs Grad. Texts Phys (Berlin: Springer) (https://doi.org/10.1007/978-3-642-31238-0)

    [34] Egerton R 2011 Physics of electron scattering Electron Energy-Loss Spectroscopy in the Electron Microscope (Berlin: Springer) pp 111-229

    [35] Lee Y, Yao X, Fischetti M V and Cho K 2020 Real-timeab initiosimulation of inelastic electron scattering using the exact, density functional, and alternative approaches Phys. Chem. Chem. Phys. 22 8616-24

    [36] Javanainen J, Eberly J H and Su Q 1988 Numerical simulations of multiphoton ionization and above-threshold electron spectra Phys. Rev. A 38 3430-46

    [37] Moller W 2004 Fundamentals of ion-surface interaction. Short Resume Technische Universitat Dresden Macdonald R J 1970 The ejection of atomic particles from ion bombarded solids Adv. Phys. 19 457-524

    [38] Dm E and Ek S 1990 Positioning single atoms with scanning tunnelling microscope Nature 344 524

    [39] Mathew P T, Rodriguez B J and Fang F Z 2020 Atomic and close-to-atomic scale manufacturing: a review on atomic layer removal methods using atomic force microscopy Nanomanuf. Metrol. 3 167-86

    [40] Custance O, Perez R and Morita S 2009 Atomic force microscopy as a tool for atom manipulation Nat. Nanotechnol. 4 803-10

    [41] Tseng A A, Sartale S D and Luo M F 2008 Atom, molecule, and nanocluster manipulations for nanostructure fabrication using scanning probe microscopy Nanofabrication: Fundamentals and Applications (Singapore; London: World Scientific) pp 1-32

    [42] Tseng A A, Notargiacomo A and Chen T P 2005 Nanofabrication by scanning probe microscope lithography: a review J. Vac. Sci. Technol. B 23 877-94

    [43] Braun K-F and Rieder K-H 2002 Engineering electronic lifetimes in artificial atomic structures Phys. Rev. Lett. 88 968011-4

    [44] Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science 262 218-20

    [45] Zeppenfeld P, Lutz C P and Eigler D M 1992 Manipulating atoms and molecules with a scanning tunneling microscope Ultramicroscopy 42-44 128-33

    [46] Bartels L, Meyer G and Rieder K-H 1997 Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast Appl. Phys. Lett. 71 213-5

    [47] Shen T-C, Wang C, Abeln G C, Tucker J R, Lyding J W, Avouris P and Walkup R E 1995 Atomic-scale desorption through electronic and vibrational excitation mechanisms Science 268 1590-2

    [48] Dujardin G, Walkup R E and Avouris P 1992 Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope Science 255 1232-5

    [49] Bartels L, Meyer G and Rieder K-H 1997 Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip Phys. Rev. Lett. 79 697-700

    [50] Eigler D M, Lutz C P and Rudge W E 1991 An atomic switch realized with the scanning tunnelling microscope Nature 352 600-3

    [51] Lyding J W, Shen T C, Hubacek J S, Tucker J R and Abeln G C 1994 Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope Appl. Phys. Lett. 64 2010-2

    [52] Ballard J B, Sisson T W, Owen J H G, Owen W R, Fuchs E, Alexander J, Randall J N and Von Ehr J R 2013 Multimode hydrogen depassivation lithography: a method for optimizing atomically precise write times J. Vac. Sci. Technol. B 31 06FC01

    [53] Walsh M A and Hersam M C 2009 Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon Annu. Rev. Phys. Chem. 60 193-216

    [54] Persson B N J 1988 Inelastic vacuum tunneling Phys. Scr. 38 282-90

    [55] Kobayashi N, Hirose K and Tsukada M 1996 First-principles study of Na atom transfer induced by the tip of a STM Surf. Sci. 348 299-304

    [56] Quaade U, Stokbro K, Thirstrup C and Grey F 1998 Mechanism of single atom switch on silicon Surf. Sci. 415 L1037-45

    [57] Nguyen G D, Liang L, Zou Q, Fu M, Oyedele A D, Sumpter B G, Liu Z, Gai Z, Xiao K and Li A P 2018 3D imaging and manipulation of subsurface selenium vacancies in PdSe2 Phys. Rev. Lett. 121 86101

    [58] Xie Y, Liu Q, Zhang P, Zhang W, Wang S, Zhuang M, Li Y, Gan F and Zhuang J 2008 Reliable lateral and vertical manipulations of a single Cu adatom on a Cu(111) surface with multi-atom apex tip: semiempirical and first-principles simulations Nanotechnology 19 335710

    [59] Liu P, Wu M, Liu H, Lu F, Wang W-H and Cho K 2019 First-principle prediction on STM Tip manipulation of Ti adatom on two-dimensional monolayer YBr3 ed D Passeri Scanning 2019 5434935

    [60] Randall J N, Owen J H G, Lake J, Saini R, Fuchs E, Mahdavi M, Moheimani S O R and Schaefer B C 2018 Highly parallel scanning tunneling microscope based hydrogen depassivation lithography J. Vac. Sci. Technol. B 36 06JL05

    [61] Oyabu N, Custance O, Yi I, Sugawara Y and Morita S 2003 Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy Phys. Rev. Lett. 90 4

    [62] Kawai S and Kawakatsu H 2006 Mechanical atom manipulation with small amplitude dynamic force microscopy Appl. Phys. Lett. 89 18-21

    [63] Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R and Morita S 2008 Complex patterning by vertical interchange atom manipulation using atomic force microscopy Science 322 413-7

    [64] Sugimoto Y, Abe M, Hirayama S, Oyabu N, Custance O and Morita S 2005 Atom inlays performed at room temperature using atomic force microscopy Nat. Mater. 4 156-9

    [65] Bamidele J, Lee S H, Kinoshita Y, Turansky R, Naitoh Y, Li Y J, Sugawara Y, Stich I and Kantorovich L 2014 Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism Nat. Commun. 5 1-7

    [66] Agarwal A and Kushner M J 2009 Plasma atomic layer etching using conventional plasma equipment J. Vac. Sci. Technol. Vac. Surf. Films 27 37-50

    [67] Konh M, He C, Lin X, Guo X, Pallem V, Opila R L, Teplyakov A V, Wang Z and Yuan B 2019 Molecular mechanisms of atomic layer etching of cobalt with sequential exposure to molecular chlorine and diketones J. Vac. Sci. Technol. A 37 021004

    [68] Kim K S et al 2017 Atomic layer etching mechanism of MoS2 for nanodevices ACS Appl. Mater. Interfaces 9 11967-76

    [69] Longo R C, Ranjan A and Ventzek P L G 2020 Density functional theory study of oxygen adsorption on polymer surfaces for atomic-layer etching: implications for semiconductor device fabrication ACS Appl. Nano Mater. 3 5189-202

    [70] Kim H 2011 Characteristics and applications of plasma enhanced-atomic layer deposition Thin Solid Films 519 6639-44

    [71] Parsons G N and Clark R D 2020 Area-selective deposition: fundamentals, applications, and future outlook Chem. Mater. 32 4920-53

    [72] Chen R, Li Y-C, Cai J-M and Cao K 2020 Atomic level deposition to extend Moore’s law and beyond Int. J. Extreme Manuf. 2 022002

    [73] Mackus A J, Merkx M J and Kessels W M 2018 From the bottom-up: toward area-selective atomic layer deposition with high selectivity Chem. Mater. 31 2-12

    [74] Li Y-C, Cao K, Lan Y-X, Zhang J-M, Gong M, Wen Y-W, Shan B and Chen R 2021 Inherently area-selective atomic layer deposition of manganese oxide through electronegativity-induced adsorption Molecules 26 3056

    [75] Leskela M, Niinisto J and Ritala M et al 2014 Atomic Layer Deposition Comprehensive Materials Processing vol 4 (London: Elsevier Health Sciences) pp 101-23

    [76] Elliott S D 2012 Atomic-scale simulation of ALD chemistry Semicond. Sci. Technol. 27 074008

    [77] Elliott S D and Pinto H P 2004 Modelling the deposition of high-k dielectric films by first principles J. Electroceram. 13 117-20

    [78] Weckman T and Laasonen K 2015 First principles study of the atomic layer deposition of alumina by TMA-H 2 O-process Phys. Chem. Chem. Phys. 17 17322-34

    [79] Elliott S D and Greer J C 2004 Simulating the atomic layer deposition of alumina from first principles J. Mater. Chem. 14 3246-50

    [80] Oviroh P O, Akbarzadeh R, Pan D, Coetzee R A M and Jen T-C 2019 New development of atomic layer deposition: processes, methods and applications Sci. Technol. Adv. Mater. 20 465-96

    [81] Shirazi M and Elliott S D 2014 Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory J. Comput. Chem. 35 244-59

    [82] Mazaleyrat G, Estève A, Jeloaica L and Djafari-Rouhani M 2005 A methodology for the kinetic Monte Carlo simulation of alumina atomic layer deposition onto silicon Comput. Mater. Sci. 33 74-82

    [83] Dkhissi A, Estève A, Mastail C, Olivier S, Mazaleyrat G, Jeloaica L and Djafari Rouhani M 2008 Multiscale modeling of the atomic layer deposition of HfO2 thin film grown on silicon: how to deal with a kinetic Monte Carlo procedure J. Chem. Theory Comput. 4 1915-27

    [84] Barra M, Scaiano J C, Fisher T A, Cernigliaro G J, Sinta R and Scaiano J C 1992 On the photodecomposition mechanism of o-diazonaphthoquinones J. Am. Chem. Soc. 114 2630-4

    [85] Qin L et al 2020 5 nm nanogap electrodes and arrays by super-resolution laser lithography Nano Lett. 20 4916-23

    [86] Katzenmeyer A M, Dmitrovic S, Baczewski A D, Campbell Q, Bussmann E, Lu T-M, Anderson E M, Schmucker S W, Ivie J A and Campbell D M 2021 Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques J. MicroNanopatterning Mater. Metrol. 20 014901

    [87] Casida M E and Huix-Rotllant M 2012 Progress in time-dependent density-functional theory Annu. Rev. Phys. Chem. 63 287-323

    [88] Waterland R L, Dobbs K D, Rinehart A M, Feiring A E, Wheland R C and Smart B E 2003 Quantum chemical modeling for 157 nm photolithography J. Fluorine Chem. 122 37-46

    [89] Palma C-A, Diller K, Berger R, Welle A, Bjork J, Cabellos J L, Mowbray D J, Papageorgiou A C, Ivleva N P and Matich S 2014 Photoinduced C-C reactions on insulators toward photolithography of graphene nanoarchitectures J. Am. Chem. Soc. 136 4651-8

    [90] Ando S 2006 DFT calculations on refractive index dispersion of fluoro-compounds in the DUV-UV-visible region J. Photopolym. Sci. Technol. 19 351-60

    [91] Manfrinato V R, Stein A, Zhang L, Nam C Y, Yager K G, Stach E A and Black C T 2017 Aberration-corrected electron beam lithography at the one nanometer length scale Nano Lett. 17 4562-7

    [92] Van Dorp W F, Zhang X, Feringa B L, Wagner J B, Hansen T W and De Hosson J T M 2011 Nanometer-scale lithography on microscopically clean graphene Nanotechnology 22 505303

    [93] Sommer B, Sonntag J, Ganczarczyk A, Braam D, Prinz G, Lorke A and Geller M 2015 Electron-beam induced nano-etching of suspended graphene Sci. Rep. 5 1-5

    [94] Utke I, Hoffmann P and Melngailis J 2008 Gas-assisted focused electron beam and ion beam processing and fabrication J. Vac. Sci. Technol. B 26 1197-276

    [95] Wu X, Mu F, Wang Y and Zhao H 2018 Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation: a review Comput. Mater. Sci. 149 98-106

    [96] Tripathi M, Mittelberger A, Pike N A, Mangler C, Meyer J C, Verstraete M J, Kotakoski J and Susi T 2018 Electron-beam manipulation of silicon dopants in graphene Nano Lett. 18 5319-23

    [97] Smith N S, Notte J A and Steele A V 2014 Advances in source technology for focused ion beam instruments MRS Bull. 39 329-35

    [98] Hanssen J L, Dakin E, McClelland J J and Jacka M 2006 Using laser-cooled atoms as a focused ion beam source J. Vac. Sci. Technol. B 24 2907-10

    [99] Hanssen J L, McClelland J J, Dakin E and Jacka M 2006 Laser-cooled atoms as a focused ion-beam source Phys. Rev. A 74 063416

    [100] Knuffman B, Steele A V and McClelland J J 2013 Cold atomic beam ion source for focused ion beam applications J. Appl. Phys. 114 044303

    [101] Notte J, Ward B, Economou N, Hill R, Percival R, Farkas L and McVey S 2007 An introduction to the helium ion microscope AIP Conference Proceedings AIP Conf. Proc. vol 931 (American Institute of Physics) pp 489-96

    [102] Winston D, Cord B M, Ming B, Bell D, DiNatale W, Stern L, Vladar A, Postek M, Mondol M and Yang J 2009 Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist J. Vac. Sci. Technol. B 27 2702-6

    [103] Fox D, Zhou Y, O’Neill A, Kumar S, Wang J J, Coleman J, Duesberg G, Donegan J and Zhang H 2013 Helium ion microscopy of graphene: beam damage, image quality and edge contrast Nanotechnology 24 335702

    [104] Fox D S et al 2015 Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam Nano Lett. 15 5307-13

    [105] Mitterreiter E, Schuler B, Schuler B, Cochrane K A, Wurstbauer U, Wurstbauer U, Weber-Bargioni A, Kastl C, Holleitner A W and Holleitner A W 2020 Atomistic positioning of defects in helium ion treated single-layer MoS2 Nano Lett. 20 4437-44

    [106] Gamo K, Takakura N, Samoto N, Shimizu R and Namba S 1984 Ion beam assisted deposition of metal organic films using focused ion beams Jpn. J. Appl. Phys. 23 L293

    [107] Holmstrom E, Kuronen A and Nordlund K 2008 Threshold defect production in silicon determined by density functional theory molecular dynamics simulations Phys. Rev. B 78 045202

    [108] Olsson P, Becquart C and Domain C 2016 Ab initio threshold displacement energies in iron Mater. Res. Lett. 4 219-25

    [109] Holmstrom E, Nordlund K and Kuronen A 2010 Threshold defect production in germanium determined by density functional theory molecular dynamics simulations Phys. Scr. 81 035601

    [110] Biersack J P and Haggmark L 1980 A Monte Carlo computer program for the transport of energetic ions in amorphous targets Nucl. Instrum. Methods 174 257-69

    [111] Yazyev O V, Tavernelli I, Rothlisberger U and Helm L 2007 Early stages of radiation damage in graphite and carbon nanostructures: a first-principles molecular dynamics study Phys. Rev. B 75 115418

    [112] Terrones M, Terrones H, Banhart F, Charlier J-C and Ajayan P 2000 Coalescence of single-walled carbon nanotubes Science 288 1226-9

    [113] Shein I, Kuznetsov M and Enyashin A 2016 Molecular dynamics simulations of defect formation in thin graphite films using the density functional tight-binding method J. Struct. Chem. 57 808-11

    [114] Lim A, Foulkes W, Horsfield A, Mason D, Schleife A, Draeger E and Correa A 2016 Electron elevator: excitations across the band gap via a dynamical gap state Phys. Rev. Lett. 116 043201

    [115] Ojanpera A, Krasheninnikov A V and Puska M 2014 Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization Phys. Rev. B 89 035120

    [116] Pruneda J, Sanchez-Portal D, Arnau A, Juaristi J and Artacho E 2007 Electronic stopping power in LiF from first principles Phys. Rev. Lett. 99 235501

    [117] Correa A A, Kohanoff J, Artacho E, Sanchez-Portal D and Caro A 2012 Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage Phys. Rev. Lett. 108 213201

    [118] Krasheninnikov A V, Miyamoto Y and Tomanek D 2007 Role of electronic excitations in ion collisions with carbon nanostructures Phys. Rev. Lett. 99 016104

    [119] Miyamoto Y, Rubio A and Tomanek D 2006 Real-time ab initio simulations of excited carrier dynamics in carbon nanotubes Phys. Rev. Lett. 97 126104

    [120] Zhu X, Zhuo X, Li Q, Yang Z and Wang J 2016 Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability Adv. Funct. Mater. 26 341-52

    [121] Yu Z, Song J, Wang D and Wang D 2017 Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures Nano Energy 40 550-8

    [122] Mowbray D J, Martinez J I, García Lastra J, Thygesen K S and Jacobsen K W 2009 Stability and electronic properties of TiO2 nanostructures with and without B and N doping J. Phys. Chem. C 113 12301-8

    [123] Kozlovskiy A, Kenzhina I, Kaikanov M, Stepanov A, Shamanin V, Zdorovets M and Tikhonov A 2018 Effect of electronic modification on nanostructures stability to degradation Mater. Res. Express 5 075010

    [124] Ercolessi F and Adams J B 1994 Interatomic potentials from first-principles calculations: the force-matching method Europhys. Lett. 26 583-8

    [125] Csanyi G, Albaret T, Payne M C and De Vita A 2004 ‘Learn on the Fly’: a hybrid classical and quantum-mechanical molecular dynamics simulation Phys. Rev. Lett. 93 175503

    [126] Schmidt J, Marques M R G, Botti S and Marques M A L 2019 Recent advances and applications of machine learning in solid-state materials science npj Comput. Mater. 5 83

    [127] Behler J 2015 Constructing high-dimensional neural network potentials: a tutorial review Int. J. Quantum Chem. 115 1032-50

    [128] Deringer V L, Pickard C J and Csanyi G 2018 Data-driven learning of total and local energies in elemental boron Phys. Rev. Lett. 120 156001

    [129] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials J. Comput. Phys. 285 316-30

    [130] Deringer V L, Proserpio D M, Csanyi G and Pickard C J 2018 Data-driven learning and prediction of inorganic crystal structures Faraday Discuss. 211 45-59

    Jian Gao, Xichun Luo, Fengzhou Fang, Jining Sun. Fundamentals of atomic and close-to-atomic scale manufacturing: a review[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 12001
    Download Citation