• INFRARED
  • Vol. 42, Issue 9, 1 (2021)
Shi-yu FANG1, Ya-rong WANG1, Zhi-xin TIAN1, Ji-chao SHI1, Yong-zheng FANG1, Chang-hong SUN2、3, Zhen-hua YE2、3, and Yu-feng LIU2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2021.09.001 Cite this Article
    FANG Shi-yu, WANG Ya-rong, TIAN Zhi-xin, SHI Ji-chao, FANG Yong-zheng, SUN Chang-hong, YE Zhen-hua, LIU Yu-feng. Research Progress of Surface Passivation of HgxCd1-xTe Films[J]. INFRARED, 2021, 42(9): 1 Copy Citation Text show less
    References

    [1] Rogalski A. History of Infrared Detectors[J]. Opto-Electronics Review, 2012, 20(3): 279-308.

    [3] Rogalski A. HgCdTe Infrared Detector Material: History, Status and Outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336.

    [4] Rogalski A, Chrzanowski K. Infrared Devices and Techniques[J]. Opto-Electronics Review, 2002, 10(2): 111-136.

    [5] Zhu L, Deng Z, Huang J, et al. Low Frequency Noise-dark Current Correlations in HgCdTe Infrared Photodetectors[J]. Optics Express, 2020, 28(16): 23660-23669.

    [6] Bhan R K, Dhar V. Recent Infrared Detector Technologies, Applications, Trends and Development of HgCdTe Based Cooled Infrared Focal Plane Arrays and Their Characterization[J]. Opto-Electronics Review, 2019, 27(2): 174-193.

    [8] He J, Wang P, Li Q, et al. Enhanced Performance of HgCdTe Long-wavelength Infrared Photodetectors with nBn Design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.

    [9] Gawron W, Martyniuk P, Kebowski A, et al. Recent Progress in MOCVD Growth for Thermoelectrically Cooled HgCdTe Medium Wavelength Infrared Photodetectors[J]. Solid-state Electronics, 2016, 118(4): 61-65.

    [11] Rogalski A. New Material Systems for Third Generation Infrared Photodetectors[J]. Opto-Electronics Review, 2008, 16(4): 458-482.

    [12] Hanna S, Eich D, Mahlein K M, et al. MCT-based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM[J]. Journal of Electronic Materials, 2016, 45(9): 4542-4551.

    [13] Liu M, Wang C, Zhou L Q. Development of Small Pixel HgCdTe Infrared Detectors[J]. Chinese Physics B, 2019, 28(3): 037804.

    [14] Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of Performance Limits of the HOT HgCdTe Photodiodes with Colloidal Quantum Dot Infrared Detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.

    [15] Smith E P G, Venzor G M, Gallagher A M, et al. Large-format HgCdTe Dual-band Long-wavelength Infrared Focal-plane Arrays[J]. Journal of Electronic Materials, 2011, 40(8): 1630-1636.

    [18] Kumar V, Pal R, Chaudhury P K, et al. A CdTe Passivation Process for Long Wavelength Infrared HgCdTe Photo-detectors[J]. Journal of Electronic Materials, 2005, 34(9): 1225-1229.

    [19] Singh R, Kaushik D, Gupta D, et al. Investigation of Passivation Processes for HgCdTe/CdS Structure for Infrared Application[J]. Thin Solid Films, 2006, 510(1-2): 235-240.

    [21] Rogalski A. Infrared Detectors: Status and Trends[J]. Progress in Quantum Electronics, 2003, 27(2): 59-210.

    [22] Rogalski A. Infrared Detectors: An Overview[J]. Infrared Physics & Technology, 2002, 43(3): 187-210.

    [24] He L, Yang J, Wang S, et al. Recent Progress in Molecular Beam Epitaxy of HgCdTe[J]. Advanced Materials, 1999, 11(13): 1115-1118.

    [26] Kopytko M, Rogalski A. HgCdTe Barrier Infrared Detectors[J]. Progress in Quantum Electronics, 2016, 47: 1-18.

    [27] Martyniuk M, Antoszewski J, Musca C A, et al. Dielectric Thin Films for MEMS-based Optical Sensors[J]. Microelectronics Reliability, 2007, 47(4-5): 733-738.

    [28] Kinch M A. The Future of Infrared: III-Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(3): 2969-2976.

    [29] Manissadjian A, Rubaldo L, Rebeil Y, et al. Improved IR Detectors to swap Heavy Systems for SWaP[C]. SPIE, 2012, 8353: 835334.

    [30] Lutz H, Breiter R, Figgemeier H, et al. Improved High Operating Temperature MCT MWIR Modules[C]. SPIE, 2014, 9070:90701D.

    [32] Destéfanis G, Tribolet P, Vuillermet M, et al. MCT IR Detectors in France[C]. SPIE, 2011, 8012: 801235.

    [33] Voitsekhovskii A V, Nesmelo S N, Dzyadukh S M, et al. Electrical Properties of nBn Structures Based on HgCdTe Grown by Molecular Beam Epitaxy on GaAs Substrates[J]. Infrared Physics & Technology, 2019, 102:103035.

    [34] Voitsekhovskii A, Nesmelov S N, Dzyadukh S M, et al. Admittance Dependences of the Mid-wave Infrared Barrier Structure Based on HgCdTe Grown by Molecular Beam Epitaxy[J]. Materials Research Express, 2019, 6(11): 116411.

    [35] Srivastav V, Pal R, Vyas H P, et al. Overview of Etching technologies used for HgCdTe[J]. Opto-Electronics Review, 2005, 13(3): 197-211.

    [36] Ariel V, Gareer V, Rosenfeld D, et al. Electrical and Structural Properties of Epitaxial CdTe/HgCdTe Interfaces[J]. Journal of Electronic Materials, 1995, 24(9): 1169-1174.

    [37] Singh R, Gupta A K, Chhabra K C. Surface Passivation of Mercury-Cadmium-Telluride Infrared Detectors[J]. Defence Science Journal, 1991, 41(3): 205-239.

    [38] Lei W, Antoszewski J, Faraone L. Progress, Challenges, and Opportunities for HgCdTe Infrared Materials and Detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303.

    [39] Zhang J, Umana-Membreno G A, Gu R, et al. Investigation of ICPECVD Silicon Nitride Films for HgCdTe Surface Passivation[J]. Journal of Electronic Materials, 2015, 44(9): 2990-3001.

    [42] Sizov F, Vuichyk M, Svezhentsova K, et al. CdTe Thin Films as Protective Surface Passivation to HgCdTe Layers for the IR and THz Detectors[J]. Materials Science in Semiconductor Processing, 2021, 124: 105577.

    [43] Haakenaasen R, Selvig E, Heier A C, et al. Improved Passivation Effect due to Controlled Smoothing of the CdTe-HgCdTe Interface Gradient by Thermal Annealing[J]. Journal of Electronic Materials, 2019, 48(10): 6099-6107.

    [45] Jones C L, Quelch M, Capper P, et al. Effects of Annealing on the Electrical Properties of Cdx-Hg1-xTe[J]. Journal of Applied Physics, 1982, 53(12): 9080-9092.

    [48] Gnade B, Simmons A, Little D, et al. Determination of the Composition of HgCdTe Oxide Films by Neutron Activation Analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987, 24(4): 1014-1016.

    [50] Davis G D. Anodic Oxide Composition and Hg Depletion at the Oxide-Semiconductor Interface of HgxCd1-xTe[J]. Journal of Vacuum Science & Technology, 1981, 19(3): 472-476.

    [51] Ahearn J S, Davis G D, Byer N E. Mechanism of Anodic Oxidation of Hg0.8Cd0.2Te[J]. Journal of Vacuum Science and Technology, 1982, 20(3): 756-759.

    [53] Takita K, Ipposhi T, Murakami K, et al. Atomic Migration and Surface Evaporation of Hg in HgxCd1-xTe Crystals Observed by 40-MeV O5+ Ion Backscattering Method[J]. Journal of Applied Physics, 1986, 59(5): 1500-1503.

    [56] Stahle C M, Helms C R, Simmons A. Thermal Stability of the Anodic Oxide/HgxCd1-xTe Interface[J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1987, 5(4): 1092-1096.

    [57] Weiss E, Mainzer N. The Characterization of Anodic Fluoride Films on HgxCd1-xTe and Their Interfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 1988, 6(4): 2765-2771.

    [58] Nemirovsky Y, Goshen R. Plasma Anodization of HgxCd1-xTe[J]. Applied Physics Letters, 1980, 37(9): 813-815.

    [59] Nemirovsky Y, Goshen R, Kidron I. The interface of Plasma-anodized HgxCd1-xTe[J]. Journal of Applied Physics, 1982, 53(7): 4888-4895.

    [60] Janousek B K, Carscallen R C. Photochemical Oxidation of (Hg,Cd)Te: Passivation Processes and Characteristics[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 195-198.

    [61] Nemirovsky Y, Burstein L. Anodic Sulfide Films on HgxCd1-xTe[J]. Applied Physics Letters, 1984, 44(4): 443-444.

    [62] Nemirovsky Y, Burstein L, Kidron I. Interface of p-type HgxCd1-xTe Passivated with Native Sulfides[J]. Journal of Applied Physics, 1985, 58(1): 366-373.

    [63] Ziegler J P, Lindquist J M, Hemminger J C. The Interface Chemistry of HgCdTe Passivated with Native Sulfide Layers Grown from Nonaqueous and Aqueous Polysulfide Solutions[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 1989, 7(2): 469-473.

    [64] Ziegler J P, Hemminger J C. Aqueous Electrochemical Growth of Anodic Sulfide Films on Mercury Cadmium Telluride[J]. Applied Physics Letters, 1989, 54(22): 2238-2240.

    [67] Mainzer N, Weiss E, Laser D, et al. Effects of Anodic Fluoro-oxide on the Thermal Stability of HgxCd1-xTe Photoconductive Arrays[J]. Journal of Vacuum Science and Technology, 1989, 7(2): 460-463.

    [68] Esquivias I, Brink D, Dal Colle M, et al. Properties of Anodic Fluoride Films on HgxCd1-xTe[J]. Materials Science and Engineering: B, 1991, 9(1-3): 207-211.

    [71] Tennant W E, Cockrum C A, Gilpin J B, et al. Key Issues in HgCdTe-based Focal Plane Arrays: An Industry Perspective[J]. Journal of Vacuum Science & Technology B, 1992, 10(4): 1359-1369.

    [72] Zimmermann P H, Reine M B, Spignese K, et al. Surface Passivation of HgCdTe Photodiodes[J]. Journal of Vacuum Science and Technology, 1990, 8(2): 1182-1184.

    [73] Yuan S, He L, Yu J, et al. Infrared Photoconductor Fabricated with a Molecular Beam Epitaxially Grown CdTe/HgCdTe Heterostructure[J]. Applied Physics Letters, 1991, 58(9): 914-916.

    [74] Xu J J, Li H B, Chen X, et al. Characterization of CdTe Passivation Layers Grown by Evaporation with Thermal Treatments[C]. SPIE, 2011, 8193: 81933A.

    [76] Sarusi G, Cinader G, Zemel A, et al. Application of CdTe Epitaxial Layers for Passivation of p-type Hg0.77Cd0.23Te[J]. Journal of Applied Physics, 1992, 71(10): 5070-5076.

    [77] Bubulac L O, Tennant W E, Bajaj J, et al. Characterization of CdTe for HgCdTe Surface Passivation[J]. Journal of Electronic Materials, 1995, 24(9): 1175-1182.

    [78] Nemirovsky Y, Amir N, Djaloshinski L, et al. Metalorganic Chemical Vapor Deposition CdTe Passivation of HgCdTe[J]. Journal of Electronic Materials, 1995, 24(5): 647-654.

    [79] Banerj Ee S, Su P Y, Dahal R, et al. Surface Passivation of HgCdTe Using Low-Pressure Chemical Vapor Deposition of CdTe[J]. Journal of Electronic Materials, 2014, 43(8): 3012-3017.

    [80] Nemirovsky Y, Amir N, Goren D, et al. The Interface of Metalorganic Chemical Vapor Deposition-CdTe/HgCdTe[J]. Journal of Electronic Materials, 1995, 24(9): 1161-1168.

    [81] Wang X, He K, Chen X, et al. Effect of Annealing on the Electrophysical Properties of CdTe/HgCdTe Passivation Interface by the Capacitance-Voltage Characteristics of the Metal-Insulator-Semiconductor Structures[J]. AIP Advances, 2020, 10(10): 105102.

    [82] Tasch A F. Field-Effect Measurements on the HgCdTe Surface[J]. Journal of Applied Physics, 1970, 41(10): 4202-4204.

    [84] Pickel J C, Kalma A H, Hopkinson G R, et al. Radiation Effects on Photonic Imagers - a Historical Perspective[J]. IEEE Transactions on Nuclear Ence, 2003, 50(3): 671-688.

    [85] Lee M Y, Kim Y H, Lee N H, et al. An Analysis of Gamma Radiation Effects on ZnS- and CdTe-Passivated HgCdTe Photodiodes[C]. SPIE, 2006, 6206: 62062J.

    [86] Saini A K, Srivastav V, Gupta S, et al. Improvement of Electrical Properties of ZnS/CdTe-HgCdTe Interface by (NH4)2S Treatment[J]. Infrared Physics & Technology, 2019, 102: 102988.

    [88] Meena V S, Mehata M S. Investigation of Grown ZnS Film on HgCdTe Substrate for Passivation of Infrared Photodetector[J]. Thin Solid Films, 2021, 731: 138751.

    [89] Jha S K, Srivastava P, Pal R, et al. Bake Stability of CdTe and ZnS on HgCdTe: An X-ray Photoelectron Spectroscopy Study[J]. Journal of Electronic Materials, 2003, 32(8): 899-905.

    [90] Ailiang C, Changhong S, Fang W, et al. Electrical Properties of Plasma-Free Ultra-Low-Temperature ALD ZnS Passivation on p-type HgCdTe[J]. Infrared Physics & Technology, 2021, 114: 103667.

    [92] Zakirov E R, Kesler V G, Sidorov G Y, et al. Effect of HgCdTe Native Oxide on the Electro-physical Properties of Metal-Insulator-Semiconductor Structures with Atomic Layer Deposited Al2O3[J]. Semiconductor Science and Technology, 2020, 35(2): 025019.

    [93] Voitsekhovskii A V, Nesmelov S N, Dzyadukh S M, et al. Admittance of MIS Structures Based on Graded-gap MBE HgCdTe with Al2O3 Insulator[J]. Physica Status Solidi (c), 2016, 13(7-9): 647-650.

    [94] Kovchavtsev A P, Sidorov G Y, Nastovjak A E, et al. Mercury Cadmium Telluride Surface Passivation by the Thin Alumina Film Atomic-Layer Deposition[J]. Journal of Applied Physics, 2017, 121(12): 125304.

    [95] Zhang P, Ye Z H, Sun C H, et al. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4716-4720.

    [96] Voitsekhovskii A V, Nesmelov S N, Dzyadukh S M, et al. Electrical Characterization of Insulator-Semiconductor Systems Based on Graded Band Gap MBE HgCdTe with Atomic Layer Deposited Al2O3 Films for Infrared Detector Passivation[J]. Vacuum, 2018, 158: 136-140.

    [101] Boieriu P, Grein C H, Garland J, et al. Effects of Hydrogen on Majority Carrier Transport and Minority Carrier Lifetimes in Long-Wavelength Infrared HgCdTe on Si[J]. Journal of Electronic Materials, 2006, 35(6): 1385-1390.

    [102] Kim Y H, Kim T, Redfern D A. Characteristics of Gradually Doped LWIR Diodes by Hydrogenation[J]. Journal of Electronic Materials, 2000, 29(6):859-864.

    [103] Holland L, Ojha S M. The Growth of Carbon Films with Random Atomic Structure from Ion Impact Damage in a Hydrocarbon Plasma[J]. Thin Solid Films, 1979, 58(1): 107-116.

    [107] Dewames R E, Williams G M, Pasko J G, et al. Current Generation Mechanisms in Small Band Gap HgCdTe p-n Junctions Fabricated by Ion Implantation[J]. Journal of Crystal Growth, 1988, 86(1-4): 849-858.

    [108] White J K, Musca C A, Lee H C, et al. Hydrogenation of ZnS Passivation on Narrow-Band Gap HgCdTe[J]. Applied Physics Letters, 2000, 76(17): 2448-2450.

    [110] Chen Y F, Chen W S. Influence of Hydrogen Passivation on the Infrared Spectra of Hg0.8Cd0.2-Te[J]. Applied Physics Letters, 1991, 59(6): 703-705.

    CLP Journals

    [1] Linhua Gao, Yanxia Cui, Qiangbing Liang, Yanzhen Liu, Guohui Li, Mingming Fan, Yuying Hao. Research progress in metal-inorganic semiconductor-metal photodetectors[J]. Infrared and Laser Engineering, 2020, 49(8): 20201025

    FANG Shi-yu, WANG Ya-rong, TIAN Zhi-xin, SHI Ji-chao, FANG Yong-zheng, SUN Chang-hong, YE Zhen-hua, LIU Yu-feng. Research Progress of Surface Passivation of HgxCd1-xTe Films[J]. INFRARED, 2021, 42(9): 1
    Download Citation