• Photonics Research
  • Vol. 7, Issue 8, 837 (2019)
Ying Zhang1,2, Haiou Zhu3, Taiwu Huang1, Zongpeng Song2, and Shuangchen Ruan2,3,*
Author Affiliations
  • 1Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 2Guangdong Provincial Key Laboratory of Mico/Nano Optomechatronics Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3College of New Materials and New Energies, Shenzhen University of Technology, Shenzhen 518118, China
  • show less
    DOI: 10.1364/PRJ.7.000837 Cite this Article Set citation alerts
    Ying Zhang, Haiou Zhu, Taiwu Huang, Zongpeng Song, Shuangchen Ruan, "Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr3 quantum dots," Photonics Res. 7, 837 (2019) Copy Citation Text show less
    References

    [1] D. Mihalas. Stellar Atmospheres(1978).

    [2] A. S. Eddington, A. S. Eddington. The Internal Constitution of the Stars(1988).

    [3] S. Chandrasekhar. Radiative Transfer(2013).

    [4] O. Arcizet, P.-F. Cohadon, T. Briant. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 444, 71-74(2006).

    [5] S. Gigan, H. R. Boehm, M. Paternostro. Self-cooling of a micromirror by radiation pressure. Nature, 444, 67-70(2006).

    [6] A. Henig, S. Steinke, M. Schnuerer. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett., 103, 245003(2009).

    [7] B.-W. Max, K. J. Chau. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter. Rep. Prog. Phys., 78, 122401(2015).

    [8] , P. Del’Haye, N. Nooshi. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett., 97, 243905(2006).

    [9] A. S. Mancini, V. Giovannetti, D. Vitali. Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett., 88, 120401(2002).

    [10] T. J. Kippenberg, H. Rokhsari, T. Carmon. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett., 95, 033901(2005).

    [11] A. Ashkin. Applications of laser-radiation pressure. Science, 210, 1081-1088(1980).

    [12] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [13] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3, 4088-4093(2011).

    [14] I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485, 486-489(2012).

    [15] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

    [16] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics, 8, 128-132(2014).

    [17] M. Liu, M. B. Johnston, H. J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395-398(2013).

    [18] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. S. Grätzel. Deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319(2013).

    [19] D. Liu, T. L. Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8, 133-138(2014).

    [20] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park. High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3. Adv. Mater., 26, 4991-4998(2014).

    [21] H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang. Photovoltaics interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546(2014).

    [22] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett., 7, 746-751(2016).

    [23] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett., 7, 167-172(2016).

    [24] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 27, 7162-7167(2015).

    [25] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, S. Mhaisalkar. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett., 6, 4360-4364(2015).

    [26] C. L. Li, Z. G. Zang, W. Chen, Z. P. Hu, X. S. Tang, W. Hu, K. Sun, X. M. Liu, W. M. Chen. Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express, 24, 15071-15078(2016).

    [27] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des., 13, 2722-2727(2013).

    [28] C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, J. Dub. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater. Sol. Cells, 172, 341-346(2017).

    [29] C. Han, C. L. Li, Z. G. Zang, M. Wang, K. Sun, X. S. Tanga, J. Dub. Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photon. Res., 5, 473-480(2017).

    [30] P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, J. S. Lee. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun., 52, 2067-2070(2016).

    [31] X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, H. Fu. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater., 29, 1604510(2017).

    [32] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).

    [33] C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, K. Sunc. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 40, 195-202(2017).

    [34] Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, Q.-H. Xiong. Advances in small perovskite-based lasers. Small Methods, 1, 1700163(2017).

    [35] X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, Y. Ma. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection. J. Mater. Chem. C, 5, 309-313(2017).

    [36] A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, E. H. Sargent. Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano, 9, 8833-8842(2015).

    [37] G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent. Colloidal quantum dot solar cells. Chem. Rev., 115, 12732-12763(2015).

    [38] D. Rossi, D. Parobek, Y. Dong, D.-H. Son. Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals. J. Phys. Chem. C, 121, 17143-17149(2017).

    [39] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347, 522-525(2017).

    [40] D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 1, 16142(2016).

    [41] Y. Zhou, J. Chen, O. M. Bakr, H. Sun. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater., 30, 6589-6613(2018).

    [42] Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, H. Sun. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc., 140, 9942-9951(2018).

    [43] Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, H. Zeng. In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett., 3, 2030-2037(2018).

    [44] Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, B. Zou. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat. Commun., 9, 4506(2018).

    [45] N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, O. Chen. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv. Mater., 29, 1606666(2017).

    [46] G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, B. Zou. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J. Am. Chem. Soc., 139, 10087-10094(2017).

    [47] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

    [48] K. Tanimura, N. Itoh. Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling. Phys. Rev. Lett., 64, 1429-1432(1990).

    [49] M. Yoshizawa, Y. Hattori, T. Kobayashi. Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy. Phys. Rev. B, 47, 3882-3889(1993).

    [50] M. Yoshizawa, K. Nishiyama, M. Fujihira, T. Kobayashi. Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes. Chem. Phys. Lett., 207, 461-467(1993).

    [51] M. P. Prange, R. M. Van Ginhoven, N. Govind, F. Gao. Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles. Phys. Rev. B, 87, 115101(2013).

    [52] Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, G. G. Mu. Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser. Laser Phys., 19, 1886-1890(2009).

    [53] H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350, 1222-1225(2015).

    [54] J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, Q. H. Xiong. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett., 15, 4571-4577(2015).

    [55] A. Yasuda, M. Yoshizawaand, T. Kobayashi. Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy. Chem. Phys. Lett., 209, 281-286(1993).

    [56] N. Mondal, A. Samanta. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale, 9, 1878-1885(2017).

    [57] M. Yoshizawa, A. Yasuda, T. Kobayashi. Ultrafast optical response in polydiacetylenes and polythiophenes. Appl. Phys. B, 53, 296-307(1991).

    [58] T. Kobayashi, M. Yoshizawa. Femtosecond nonlinear response of polydiacetylenes and polythiophenes. Synth. Metals, 43, 3129-3134(1991).

    [59] T. Kobayashi. Ultrafast relaxation in conjugated polymers. J. Lumin., 53, 159-164(1992).

    [60] J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, S. Yu. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc., 140, 3626-3634(2018).

    [61] T. Kobayashi, H. Ikeda. Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals. Chem. Phys. Lett., 133, 54-58(1987).

    [62] T. Kobayashi, H. Ikeda. Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals. Synth. Metals, 18, 441-446(1987).

    [63] T. Kobayashi, H. Ikeda, S. Tstmeyuki, T. Kotaka. Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values. Chem. Phys. Lett., 116, 515-520(1985).

    [64] P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, N. J. Podraza. Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles. Mater. Sci. Semi. Proc., 84, 91-100(2018).

    [65] B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, W. M. M. Kessels. Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. Sol. Energ. Mater. Sol. Cells, 173, 111-119(2017).

    [66] F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology. ACS Nano, 9, 4533-4542(2015).

    [67] Z. Bai, H. Zhong. Halide perovskite quantum dots: potential candidates for display technology. Sci. Bull., 60, 1622-1624(2015).

    [68] T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, H. A. Dewi. Spectral features and charge dynamics of lead halide perovskites: origins and interpretations. Acc. Chem. Res., 49, 294-302(2016).

    [69] H. Polaert, G. Grehan, G. Gouesbet. Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean. Opt. Commun., 155, 169-179(1998).

    [70] J. P. Barton. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam. J. Appl. Phys., 64, 1632-1639(1998).

    [71] J. P. Barton, D. R. Alexander. Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys., 66, 2800-2802(1989).

    [72] E. F. Nichols, G. F. Hull. The pressure due to radiation. Astrophys. J., 17, 315-351(1903).

    CLP Journals

    [1] Dongdong Yan, Shuangyi Zhao, Huaxin Wang, Zhigang Zang, "Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots," Photonics Res. 8, 1086 (2020)

    Ying Zhang, Haiou Zhu, Taiwu Huang, Zongpeng Song, Shuangchen Ruan, "Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr3 quantum dots," Photonics Res. 7, 837 (2019)
    Download Citation