• High Power Laser and Particle Beams
  • Vol. 31, Issue 5, 53201 (2019)
Li Xiaoyan*, Yan Liping, and Zhao Xiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11884/hplpb201931.190030 Cite this Article
    Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31(5): 53201 Copy Citation Text show less
    References

    [1] Chu H C, Jeng S K, Chen C H. Reflection and transmission characteristics of lossy periodic composite structures[J]. IEEE Trans Antennas Propagation, 1996, 44(3):580-587.

    [2] Evans R W. Design guidelines for shielding effectiveness, current carrying capability, and the enhancement of conductivity of composite materials[R]. NASA Contractor Report, No. 4784, 1997.

    [3] Rosa I M D, Sarasini F, Sarto M S, et al. EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications[J]. IEEE Trans Electromagnetic Compatibility, 2008, 50(3):556-563.

    [4] Leininger M, Thurecht F, Ruddle A. Advanced grounding methods in the presence of carbon fiber reinforced plastic structures[C]//2012 ESA Workshop on Aerospace EMC. 2012:1-6.

    [5] Cabello M R, Fernandez S, Pous M, et al. SIVA UAV: A case study for the EMC analysis of composite air vehicles[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4):1103-1113.

    [6] Dawson J F, Austin A N, Flintoft I D, et al. Shielding effectiveness and sheet conductance of nonwoven carbon-fiber sheets[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(1):84-92.

    [7] Holloway C L, Sarto M S, Johansson M. Analyzing carbon-fiber composite materials with equivalent-layer models[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(4):833-844.

    [8] Qi Jiaran, Wang Nannan, Xiao Shanshan. Removing Fabry-Pérot artifacts for electromagnetic homogenization of lossless and lossy dielectric composite based on scattering parameters[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(3):1852-1859.

    [9] Cordill B D, Seguin S A, Ewing M S. Shielding effectiveness of carbon-fiber composite aircraft using large cavity theory[J]. IEEE Trans Instrumentation and Measurement, 2013, 62(4):743-751.

    [10] Rath V, Panwar V. Electromagnetic interference shielding analysis of conducting composites in near- and far-field region[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(6):1795-1801.

    [11] Vas J V, Thomas M J. Electromagnetic shielding effectiveness of layered polymer nanocomposites[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(2):376-384.

    [12] Jazzar A, Clavel E, Meunier G. Study of lightning effects on aircraft with predominately composite structures[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(3):675-682.

    [13] Smorgonskiy A, Rachidi F, Rubinstein M, et al. Are standardized lightning current waveforms suitable for aircraft and wind turbine blades made of composite materials [J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4):1320-1328.

    [14] Huang Liyang, Gao Cheng, Guo Fei, et al. Lightning indirect effects on helicopter: numerical simulation and experiment validation[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(4):1171-1179.

    [17] Leone M, Mantzke A. A Foster-type field-to-transmission line coupling model for broadband simulation[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(6):1-8.

    [18] Otsuyama T, Naganawa J, Honda J, et al. Measuring signal environment in the aircraft surveillance frequency by flight experiments[C]//2018 International Symposium on Electromagnetic Compatibility. 2018:44-47.

    [19] Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: Wiley, 1997.

    Li Xiaoyan, Yan Liping, Zhao Xiang. Coupling of electromagnetic field to transmission line above the composite plate[J]. High Power Laser and Particle Beams, 2019, 31(5): 53201
    Download Citation