• Nano-Micro Letters
  • Vol. 16, Issue 1, 150 (2024)
Guan Wang1、2, Guixin Wang2, Linfeng Fei4、*, Lina Zhao5, and Haitao Zhang1、3、**
Author Affiliations
  • 1Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  • 2School of Chemical Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
  • 3School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, People’s Republic of China
  • 4School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
  • 5Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01363-y Cite this Article
    Guan Wang, Guixin Wang, Linfeng Fei, Lina Zhao, Haitao Zhang. Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects[J]. Nano-Micro Letters, 2024, 16(1): 150 Copy Citation Text show less
    References

    [1] G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    [2] Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33, e2100855 (2021).

    [3] M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373–395 (2022).

    [4] J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu et al., Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1–42 (2020).

    [5] IEA, Paris. Global EV Policy Explorer (2022). https://www.iea.org/articles/global-ev-policy-explorer

    [6] M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, F.J. Puglia, S. Santee et al., Life verification of large capacity Yardney Li-ion cells and batteries in support of NASA missions. Int. J. Energy Res. 34, 116–132 (2010).

    [7] N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    [8] N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022).

    [9] G. Nagasubramanian, Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31, 99–104 (2001).

    [10] P. Selinis, F. Farmakis, Review—a review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance. J. Electrochem. Soc. 169, 010526 (2022).

    [11] A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020).

    [12] M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021).

    [13] S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 (2022).

    [14] N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022).

    [15] Y. Na, X. Sun, A. Fan, S. Cai, C. Zheng, Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 32, 973–982 (2021).

    [16] D. Zhang, C. Tan, T. Ou, S. Zhang, L. Li et al., Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review. Energy Rep. 8, 4525–4534 (2022).

    [17] S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2023).

    [18] J. Sun, L. Ye, X. Zhao, P. Zhang, J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: a review. Molecules 28, 2108 (2023).

    [19] Y. Zheng, T. Qian, J. Zhou, J. Liu, Z. Wang et al., Advanced strategies for improving lithium storage performance under cryogenic conditions. Adv. Energy Mater. 13, 2203719 (2023).

    [20] Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2, 434–442 (2023).

    [21] C.E.L. Foss, A.M. Svensson, Ø. Gullbrekken, S. Sunde, F. Vullum-Bruer, Temperature effects on performance of graphite anodes in carbonate based electrolytes for lithium ion batteries. J. Energy Storage 17, 395–402 (2018).

    [22] X. Dong, Y. Yang, P. Li, Z. Fang, Y. Wang et al., A high-rate and long-life rechargeable battery operated at –75 °C. Batter. Supercaps 3, 1016–1020 (2020).

    [23] L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1–x S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017).

    [24] G.A. Collins, H. Geaney, K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 9, 14172–14213 (2021).

    [25] Y. Li, G. Zheng, G. Liu, Z. Yuan, X. Huang et al., A review on electrode and electrolyte for lithium ion batteries under low temperature. Electroanalysis 35, e202300042 (2023).

    [26] Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 50, 3178–3210 (2021).

    [27] P. Mei, Y. Zhang, W. Zhang, Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance. Nanoscale 15, 987–997 (2023).

    [28] Y. Li, K. Qian, Y.-B. He, Y.V. Kaneti, D. Liu et al., Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. J. Power. Sources 342, 24–30 (2017).

    [29] P.F. Lang, Is a metal “ions in a sea of delocalized electrons?” J. Chem. Educ. 95, 1787–1793 (2018).

    [30] X. Dong, Y.-G. Wang, Y. Xia, Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 54, 3883–3894 (2021).

    [31] X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036–2089 (2021).

    [32] L. Zhao, H. Zhao, X. Long, Z. Li, Z. Du, Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl. Mater. Interfaces 10, 35963–35971 (2018).

    [33] M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34, e2105611 (2022).

    [34] E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    [35] J. Han, P. Liu, Y. Ito, X. Guo, A. Hirata et al., Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy 45, 273–279 (2018).

    [36] M.C. Smart, B.V. Ratnakumar, Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158, A379–A389 (2011).

    [37] H. Ge, T. Aoki, N. Ikeda, S. Suga, T. Isobe et al., Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization. J. Electrochem. Soc. 164, A1050–A1060 (2017).

    [38] C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24–A27 (2015).

    [39] P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020).

    [40] Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022).

    [41] D. Deng, Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3, 385–418 (2015).

    [42] Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6, 88683–88700 (2016).

    [43] S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023).

    [44] X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei et al., In-situ formation of Co1–xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem. Eng. J. 421, 127755 (2021).

    [45] J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35, e2210734 (2023).

    [46] S. Faraji, O. Yildiz, C. Rost, K. Stano, N. Farahbakhsh et al., Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 111, 411–418 (2017).

    [47] S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang et al., Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23–28 (2005).

    [48] Q. Wei, X. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14, 7 (2023).

    [49] B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1–71 (2015).

    [50] J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12. J. Power. Sources 159, 1340–1345 (2006).

    [51] X.-H. Ma, X. Cao, Y.-Y. Ye, F. Qiao, M.-F. Qian et al., Study on low-temperature performances of Nb16W5O55 anode for lithium-ion batteries. Solid State Ion. 353, 115376 (2020).

    [52] N.V. Kosova, D.Z. Tsydypylov, Effect of mechanical activation and carbon coating on electrochemistry of TiNb2O7 anodes for lithium-ion batteries. Batteries 8, 52 (2022).

    [53] G. Yu, Q. Zhang, J. Jing, X. Wang, Y. Li et al., Bulk modification of porous TiNb2 O7 microsphere to achieve superior lithium-storage properties at low temperature. Small 19, e2303087 (2023).

    [54] Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition. J. Power. Sources 515, 230601 (2021).

    [55] L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chem. Eng. J. 419, 129387 (2021).

    [56] N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021).

    [57] C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014).

    [58] X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014).

    [59] X. Tian, L. Du, Y. Yan, S. Wu, An investigation into the charge-storage mechanism of MnO@Graphite as anode for lithium-ion batteries at low temperature. ChemElectroChem 6, 2248–2253 (2019).

    [60] L. Tan, X. Lan, R. Hu, J. Liu, B. Yuan et al., Stable lithium storage at subzero temperatures for high-capacity Co3O4@graphene composite anodes. ChemNanoMat 7, 61–70 (2021).

    [61] J.-G. Han, I. Park, J. Cha, S. Park, S. Park et al., Interfacial architectures derived by lithium difluoro(bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability. ChemElectroChem 4, 3 (2017).

    [62] H. Duan, L. Du, S. Zhang, Z. Chen, S. Wu, Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode. J. Mater. Chem. A 7, 8327–8334 (2019).

    [63] X. Liu, Y. Wang, Y. Yang, W. Lv, G. Lian et al., A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 70, 104550 (2020).

    [64] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power. Sources 196, 13–24 (2011).

    [65] L. Li, Y. Ma, F. Cui, Y. Li, D. Yu et al., Novel insight into rechargeable aluminum batteries with promising selenium Sulfide@Carbon nanofibers cathode. Adv. Mater. 35, e2209628 (2023).

    [66] E. Markevich, G. Salitra, D. Aurbach, Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J. Electrochem. Soc. 163, A2407–A2412 (2016).

    [67] Y. Domi, H. Usui, T. Hirosawa, K. Sugimoto, T. Nakano et al., Impact of low temperatures on the lithiation and delithiation properties of Si-based electrodes in ionic liquid electrolytes. ACS Omega 7, 15846–15853 (2022).

    [68] H. Mou, W. Xiao, C. Miao, R. Li, L. Yu, Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front. Chem. 8, 141 (2020).

    [69] L. Tan, Y. Wu, D. Cheng, R. Hu, Tailoring electrolytes for Sn-based anodes toward Li storage at a low temperature of − 50 °C. Electrochim. Acta 469, 143225 (2023).

    [70] X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020).

    [71] J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018).

    [72] Z. Yao, X. Xia, C.-A. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018).

    [73] M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska et al., Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017).

    [74] J. Li, T. Zhang, C. Han, H. Li, R. Shi et al., Crystallized lithium titanate nanosheets prepared via spark plasma sintering for ultra-high rate lithium ion batteries. J. Mater. Chem. A 7, 455–460 (2019).

    [75] Z. Lu, J. Wang, X. Cheng, W. Xie, Z. Gao et al., Riemannian surface on carbon anodes enables Li-ion storage at − 35 °C. ACS Cent. Sci. 8, 905–914 (2022).

    [76] E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277–2283 (2015).

    [77] M. Marinaro, M. Pfanzelt, P. Kubiak, R. Marassi, M. Wohlfahrt-Mehrens, Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power. Sources 196, 9825–9829 (2011).

    [78] L. Tan, R. Hu, H. Zhang, X. Lan, J. Liu et al., Subzero temperature promotes stable lithium storage in SnO2. Energy Storage Mater. 36, 242–250 (2021).

    [79] S. Choi, Y.-G. Cho, J. Kim, N.-S. Choi, H.-K. Song et al., Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range. Small 13, 201603045 (2017).

    [80] J. Li, Z. Tang, Z. Zhang, Excellent low-temperature lithium intercalation performance of nanostructured hydrogen titanate electrodes. Electrochem. Solid-State Lett. 8, A570 (2005).

    [81] H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng et al., Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloys Compd. 701, 99–106 (2017).

    [82] I.M. Gavrilin, Y.O. Kudryashova, A.A. Kuz’mina, T.L. Kulova, A.M. Skundin et al., High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 888, 115209 (2021).

    [83] J. Wang, M. Yang, J. Wang, D. Liu, G. Zou et al., Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a wide-temperature range. Energy Storage Mater. 47, 611–619 (2022).

    [84] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10, 8526–8535 (2016).

    [85] J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding et al., Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power. Sources 430, 74–79 (2019).

    [86] M. Shang, X. Chen, B. Li, J. Niu, A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode. ACS Nano 14, 3678–3686 (2020).

    [87] F. Lu, J. Liu, J. Xia, Y. Yang, X. Wang, Engineering C-N moieties in branched nitrogen-doped graphite tubular foam toward stable Li+-storage at low temperature. Ind. Eng. Chem. Res. 59, 5858–5864 (2020).

    [88] H.-H. Fan, H.-H. Li, Z.-W. Wang, W.-L. Li, J.-Z. Guo et al., Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 11, 47886–47893 (2019).

    [89] C. Liang, Y. Tao, N. Yang, D. Huang, S. Li et al., Bubble-templated synthesis of Fe2(MoO4)3 hollow hierarchical microsphere with superior low-temperature behavior and high areal capacity for lithium ion batteries. Electrochim. Acta 311, 192–200 (2019).

    [90] L. Li, S. Peng, J.K.Y. Lee, D. Ji, M. Srinivasan et al., Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017).

    [91] A. Huang, Y. Ma, J. Peng, L. Li, S.-L. Chou et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141–162 (2021).

    [92] G. Zhao, Z. Wei, N. Zhang, K. Sun, Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Mater. Lett. 89, 243–246 (2012).

    [93] C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 (2022).

    [94] Q. Meng, F. Chen, Q. Hao, N. Li, X. Sun, Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J. Alloys Compd. 885, 160842 (2021).

    [95] Z. Gao, X. Zhang, H. Hu, D. Guo, H. Zhao et al., Influencing factors of low- and high-temperature behavior of Co-doped Zn2SnO4–graphene–carbon nanocomposite as anode material for lithium-ion batteries. J. Electroanal. Chem. 791, 56–63 (2017).

    [96] Z. Pu, Q. Lan, Y. Li, S. Liu, D. Yu et al., Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at –20 °C. J. Power. Sources 437, 226890 (2019).

    [97] J. Li, Y. Li, Q. Lan, Z. Yang, X.-J. Lv, Multiple phase N-doped TiO2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J. Power. Sources 423, 166–173 (2019).

    [98] G. Yan, X. Xu, W. Zhang, Z. Liu, W. Liu, Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology 31, 205402 (2020).

    [99] T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin et al., Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9, e2105119 (2022).

    [100] D. Lin, L. Lyu, K. Li, G. Chen, H. Yao et al., Ultrahigh capacity and cyclability of dual-phase TiO2 nanowires with low working potential at room and subzero temperatures. J. Mater. Chem. A 9, 9256–9265 (2021).

    [101] M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31, 2009397 (2021).

    [102] Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 (2017).

    [103] Z. Yao, H. Yin, L. Zhou, G. Pan, Y. Wang et al., Ti3+ self-doped Li4 Ti5 O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 15, e1905296 (2019).

    [104] L. Hou, X. Qin, X. Gao, T. Guo, X. Li et al., Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J. Alloys Compd. 774, 38–45 (2019).

    [105] Z. Shen, Z. Zhang, S. Wang, Z. Liu, L. Wang et al., Mg2+–W6+ Co-doped Li2ZnTi3O8 anode with outstanding room, high and low temperature electrochemical performance for lithium-ion batteries. Inorg. Chem. Front. 6, 3288–3294 (2019).

    [106] Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2, 122–130 (2020).

    [107] N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura et al., Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification. Electrochem. Commun. 13, 1116–1118 (2011).

    [108] K. Li, Y. Zhang, Y. Sun, Y. Xu, H. Zhang et al., Template-free synthesis of biomass-derived carbon coated Li4Ti5O12 microspheres as high performance anodes for lithium-ion batteries. Appl. Surf. Sci. 459, 572–582 (2018).

    [109] W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes. Small Struct. 1, 2070001 (2020).

    [110] Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 9, 17145–17154 (2017).

    [111] Y. Wang, Y.-X. Zhang, W.-J. Yang, S. Jiang, X.-W. Hou et al., Enhanced rate performance of Li4Ti5O12 anode for advanced lithium batteries. J. Electrochem. Soc. 166, A5014–A5018 (2018).

    [112] F. Nobili, M. Mancini, S. Dsoke, R. Tossici, R. Marassi, Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. J. Power. Sources 195, 7090–7097 (2010).

    [113] Z. Zhang, T. Hu, Q. Sun, Y. Chen, Q. Yang et al., The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power. Sources 453, 227908 (2020).

    [114] L. Tan, X. Lan, J. Chen, H. Zhang, R. Hu et al., LiF-induced stable solid electrolyte interphase for a wide temperature SnO2-based anode extensible to –50℃. Adv. Energy Mater. 11, 2101855 (2021).

    [115] X. Liu, T. Zhang, X. Shi, Y. Ma, D. Song et al., Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries. Adv. Sci. 9, e2104531 (2022).

    [116] Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6, 045025 (2019).

    [117] D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur Co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 27, 387–395 (2020).

    [118] A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch et al., Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior. J. Power. Sources 363, 70–77 (2017).

    [119] Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, 15292 (2017).

    [120] Y. Yan, L. Ben, Y. Zhan, X. Huang, Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 187, 186–192 (2016).

    [121] G. Wang, J. Chen, F. Zhang, L. Zhao, Q. Chen et al., Enhanced low-temperature performance of multiscale (Nb2O5/TiNb2O7)@C nanoarchitectures with intensified ion diffusion kinetics. J. Energy Storage 74, 109415 (2023).

    [122] B. Hu, X. Zhou, J. Xu, X. Wang, N. Yuan et al., Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li4Ti5O12 electrode. ChemElectroChem 7, 716–722 (2020).

    [123] A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018).

    [124] W. Ma, Y. Wang, Y. Yang, X. Wang, Z. Yuan et al., Temperature-dependent Li storage performance in nanoporous Cu–Ge–Al alloy. ACS Appl. Mater. Interfaces 11, 9073–9082 (2019).

    [125] L. Lin, L. Zhang, S. Wang, F. Kang, B. Li, Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J. Mater. Chem. A 11, 7867–7897 (2023).

    [126] P. Wang, J. Tian, J. Hu, X. Zhou, C. Li, Supernormal conversion anode consisting of high-density MoS2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 11, 7390–7400 (2017).

    [127] C.-K. Ho, C.-Y.V. Li, Z. Deng, K.-Y. Chan, H. Yung et al., Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon 145, 614–621 (2019).

    [128] Y. Xue, H. Li, M. Zhang, W. Yu, K. Zhuo et al., MnO@N–C/flake graphite composite featuring bottom-top charge transfer channels and superior Li-storage performance at low-temperature. J. Alloys Compd. 848, 156571 (2020).

    [129] G. Wang, M. Aubin, A. Mehta, H. Tian, J. Chang et al., Stabilization of Sn anode through structural reconstruction of a Cu–Sn intermetallic coating layer. Adv. Mater. 32, e2003684 (2020).

    [130] Z. Yi, Z. Wang, Y. Cheng, L. Wang, Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy Environ. Mater. 1, 132–147 (2018).

    [131] J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga et al., Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).

    [132] F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang et al., Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    [133] H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    [134] H. Liang, L. Liu, N. Wang, W. Zhang, C.-T. Hung et al., Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at − 40 ℃. Adv. Mater. 34, e2202873 (2022).

    [135] S.X. Drakopoulos, A. Gholamipour-Shirazi, P. MacDonald, R.C. Parini, C.D. Reynolds et al., Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning. Cell Rep. Phys. Sci. 2, 100683 (2021).

    Guan Wang, Guixin Wang, Linfeng Fei, Lina Zhao, Haitao Zhang. Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects[J]. Nano-Micro Letters, 2024, 16(1): 150
    Download Citation