• Acta Physica Sinica
  • Vol. 69, Issue 4, 046102-1 (2020)
Xian-Li Ren1, Wei-Wei Zhang1, Xiao-Yong Wu2, Lu Wu2, and Yue-Xia Wang1、*
Author Affiliations
  • 1Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
  • 2The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005, China
  • show less
    DOI: 10.7498/aps.69.20191671 Cite this Article
    Xian-Li Ren, Wei-Wei Zhang, Xiao-Yong Wu, Lu Wu, Yue-Xia Wang. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties[J]. Acta Physica Sinica, 2020, 69(4): 046102-1 Copy Citation Text show less
    System evolution vs MC steps at 800, 1000, 1200 and 1500 K. (a), (c), (e) and (g) System energy; (b), (d), (f), and (h) SRO parameters for atomic pairs.
    Fig. 1. System evolution vs MC steps at 800, 1000, 1200 and 1500 K. (a), (c), (e) and (g) System energy; (b), (d), (f), and (h) SRO parameters for atomic pairs.
    The lattice structure of FeCuCrMnMo alloy, in which Cu-rich short range order (SRO) is framed by a dotted box. Blue spheres represent Cu atoms.
    Fig. 2. The lattice structure of FeCuCrMnMo alloy, in which Cu-rich short range order (SRO) is framed by a dotted box. Blue spheres represent Cu atoms.
    STEM-EDS maps of the FeCuCrMnMo alloys at 773 K for 1 h[7].
    Fig. 3. STEM-EDS maps of the FeCuCrMnMo alloys at 773 K for 1 h[7].
    Six SQS structures of FeCuCrMnMo alloy: (a) Order parameters of each atomic pairs; (b) total energy per atom.
    Fig. 4. Six SQS structures of FeCuCrMnMo alloy: (a) Order parameters of each atomic pairs; (b) total energy per atom.
    Average radial distribution functions for BCC structure (unrelaxed), SRO structure (relaxed) and SQS structure (relaxed) of FeCuCrMnMo alloy.
    Fig. 5. Average radial distribution functions for BCC structure (unrelaxed), SRO structure (relaxed) and SQS structure (relaxed) of FeCuCrMnMo alloy.
    Partial pair distribution functions of FeCuCrMnMo alloy: (a), (b) SQS structure; (c), (d) SRO structure. Dotted lines show the distances of first nearest neighbor (1NN) and second nearest neighbor in unrelaxed lattice.
    Fig. 6. Partial pair distribution functions of FeCuCrMnMo alloy: (a), (b) SQS structure; (c), (d) SRO structure. Dotted lines show the distances of first nearest neighbor (1NN) and second nearest neighbor in unrelaxed lattice.
    Partial density of states of FeCuCrMnMo alloy (spin-up). Dotted line shows the Fermi level.
    Fig. 7. Partial density of states of FeCuCrMnMo alloy (spin-up). Dotted line shows the Fermi level.
    COHP for FeCuCrMnMo alloy describing Fe-Mo, Cu-Mo, Cr-Mo and Mn-Mo interactions.
    Fig. 8. COHP for FeCuCrMnMo alloy describing Fe-Mo, Cu-Mo, Cr-Mo and Mn-Mo interactions.
    Density of state of FeCuCrMnMo alloy in SRO lattice and SQS lattice.
    Fig. 9. Density of state of FeCuCrMnMo alloy in SRO lattice and SQS lattice.
    Electron density of {100} atomic plane: (a) SRO structure; (b) SQS structure; (c) W lattice.
    Fig. 10. Electron density of {100} atomic plane: (a) SRO structure; (b) SQS structure; (c) W lattice.
    Magnetic moments of individual atoms in SRO structure and SQS structure of FeCuCrMnMo alloy.
    Fig. 11. Magnetic moments of individual atoms in SRO structure and SQS structure of FeCuCrMnMo alloy.
    金属磁性晶格内聚能/eV体积/Å3晶格常数
    a (理论值) a0 (实验值)
    HEA-SROFMBCC–8.1312.152.8962.878[7]
    NMBCC–8.1212.052.889
    FMFCC–8.0812.313.666
    HEA-SQSFMBCC–8.0912.532.926
    FeFMBCC–8.3211.782.8322.834[22]
    CuNMFCC–3.7211.813.6363.615[23]
    CrAFMBCC–9.5111.972.8352.882[23]
    MnFMBCC–8.2914.383.0803.080[23]
    MoNMBCC–10.9515.583.1483.147[23]
    Table 1.

    Cohesive energy per atom, structural volume per atom, and lattice parameters for SRO and SQS structures, and Fe, Cu, Cr, Mn, Mo, and W metals. FM, AFM, and NM denote ferromagnetism, antiferromagnetism, and nonmagnetic, respectively.

    FeCuCrMnMo合金的SRO结构、SQS结构及相关纯金属的平均单个原子能、平均单个原子体积和晶格常数值. 其中FM, NM和AFM分别代表铁磁性、顺磁性和反铁磁性

    混合焓CrMnMoFe
    Cu1241913
    Cr20–1
    Mn50
    Mo–2
    Table 2.

    Enthalpy of mixing of binary systems containing the elements in FeCuCrMnMo alloy(Unit: KJ/mol).

    FeCuCrMnMo合金中不同原子对间的混合焓[24] (单位: KJ/mol)

    原子对Cu-FeCu-MnCu-MoCu-CrCu-Cu
    ICOHP–0.54–0.59–0.88–0.66–0.39
    原子对Fe-CrFe-MoMn-MoCr-MoCr-Mn
    ICOHP–1.45–1.68–1.72–1.78–1.61
    Table 3.

    Mean values of ICOHPs for each atomic pair in FeCuCrMnMo alloy.

    FeCuCrMnMo合金中不同原子对的ICOHP平均值

    结构C11C12C44BBEOSGEνG/BAZ
    SRO263.4187.5100.5212.8188.788.2232.50.3182.4152.65
    SQS156.1139.385.1144.9154.443.4118.40.3643.32310.1
    Table 4.

    Calculated mechanical properties for SRO structure and SQS structure of FeCuCrMnMo alloy. The unit for the elastic moduli is GPa.

    FeCuCrMnMo合金SRO结构和SQS结构的力学性质, 其中弹性模量的单位为GPa

    Xian-Li Ren, Wei-Wei Zhang, Xiao-Yong Wu, Lu Wu, Yue-Xia Wang. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties[J]. Acta Physica Sinica, 2020, 69(4): 046102-1
    Download Citation