• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081011 (2021)
Zongjia Shi1、2, Zhenjiao Xiang1, Yinglei Du1、*, Min Wan1, Jingliang Gu1, Guohui Li1, Rujian Xiang1, Jiang You1、2, Jing Wu1, and Honglai Xu1
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202133.210040 Cite this Article
    Zongjia Shi, Zhenjiao Xiang, Yinglei Du, Min Wan, Jingliang Gu, Guohui Li, Rujian Xiang, Jiang You, Jing Wu, Honglai Xu. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011 Copy Citation Text show less
    References

    [2] Hardy J W. Adaptive optics: a progress review[C]Proceedings of SPIE Active Adaptive Optical Systems. San Diego, CA, USA: SPIE, 1991: 1542.

    [3] Yasuno Y, Wiesendanger T F, Ruprecht A K, et al. Wavefront-flatness evaluation by wavefront-correlation-information-entropy method and its application for adaptive confocal microscope[J]. Optics Communications, 232, 91-97(2004).

    [5] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).

    [6] Débarre D, Booth M J, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Optics Express, 15, 8176-8190(2007).

    [7] Kendrick R L, Acton D S, Duncan A L. Phase-diversity wave-front sensor for imaging systems[J]. Applied Optics, 33, 6533-6546(1994).

    [8] Guo Hong, Korablinova N, Ren Qiushi, et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 14, 6456-6462(2006).

    [9] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [10] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [11] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [12] Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765-10776(2019).

    [14] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [16] Yan Haixing, Li Shushan, Zhang Deliang, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 39, 3023-3031(2000).

    [17] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 2, 209-224(1992).

    [18] Yang Ping, Ao Mingwu, Liu Yuan, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 15, 17051-17062(2007).

    Zongjia Shi, Zhenjiao Xiang, Yinglei Du, Min Wan, Jingliang Gu, Guohui Li, Rujian Xiang, Jiang You, Jing Wu, Honglai Xu. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011
    Download Citation