• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081011 (2021)
Zongjia Shi1,2, Zhenjiao Xiang1, Yinglei Du1,*, Min Wan1..., Jingliang Gu1, Guohui Li1, Rujian Xiang1, Jiang You1,2, Jing Wu1 and Honglai Xu1|Show fewer author(s)
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 2Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202133.210040 Cite this Article
    Zongjia Shi, Zhenjiao Xiang, Yinglei Du, Min Wan, Jingliang Gu, Guohui Li, Rujian Xiang, Jiang You, Jing Wu, Honglai Xu. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011 Copy Citation Text show less
    References

    [2] Hardy J W. Adaptive optics: a progress review[C]Proceedings of SPIE Active Adaptive Optical Systems. San Diego, CA, USA: SPIE, 1991: 1542.

    [3] Yasuno Y, Wiesendanger T F, Ruprecht A K, et al. Wavefront-flatness evaluation by wavefront-correlation-information-entropy method and its application for adaptive confocal microscope[J]. Optics Communications, 232, 91-97(2004).

    [5] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).

    [6] Débarre D, Booth M J, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Optics Express, 15, 8176-8190(2007).

    [7] Kendrick R L, Acton D S, Duncan A L. Phase-diversity wave-front sensor for imaging systems[J]. Applied Optics, 33, 6533-6546(1994).

    [8] Guo Hong, Korablinova N, Ren Qiushi, et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 14, 6456-6462(2006).

    [9] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [10] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [11] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [12] Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765-10776(2019).

    [14] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [16] Yan Haixing, Li Shushan, Zhang Deliang, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 39, 3023-3031(2000).

    [17] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 2, 209-224(1992).

    [18] Yang Ping, Ao Mingwu, Liu Yuan, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 15, 17051-17062(2007).

    CLP Journals

    [1] Qi Liu, Yinglei Du, Rujian Xiang, Guohui Li, Qiushi Zhang, Zhenjiao Xiang, Jing Wu, Xian Yue, Anchao Bao, Jiang You. Deep learning phase inversion technique for single frame image based on Walsh function modulation[J]. High Power Laser and Particle Beams, 2024, 36(6): 069002

    Zongjia Shi, Zhenjiao Xiang, Yinglei Du, Min Wan, Jingliang Gu, Guohui Li, Rujian Xiang, Jiang You, Jing Wu, Honglai Xu. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011
    Download Citation