• Chinese Journal of Lasers
  • Vol. 50, Issue 18, 1813007 (2023)
Sihua Su1、2, Kaiyang Wang1、2, Can Huang1、2, Limin Jin1、2, Shumin Xiao1、2, and Qifeng Ruan1、2、*
Author Affiliations
  • 1Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
  • 2Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
  • show less
    DOI: 10.3788/CJL230749 Cite this Article Set citation alerts
    Sihua Su, Kaiyang Wang, Can Huang, Limin Jin, Shumin Xiao, Qifeng Ruan. Advances in Structural Color Research Based on Two-Photon Polymerization 3D Printing Technology[J]. Chinese Journal of Lasers, 2023, 50(18): 1813007 Copy Citation Text show less
    References

    [1] Zhu Y Z, Tang T T, Zhao S Y et al. Recent advancements and applications in 3D printing of functional optics[J]. Additive Manufacturing, 52, 102682(2022).

    [2] Zhao C F, Wang J, Zhang Z Q et al. Research progress on the design of structural color materials based on 3D printing[J]. Advanced Materials Technologies, 8, 2200257(2023).

    [3] Yang L A, Mayer F, Bunz U H F et al. Multi-material multi-photon 3D laser micro- and nanoprinting[J]. Light: Advanced Manufacturing, 2, 296-312(2021).

    [4] Wang H, Zhang W, Ladika D et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications[J]. Advanced Functional Materials, 2214211(2023).

    [5] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters, 22, 132-134(1997).

    [6] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [7] Del Pozo M, Delaney C, Bastiaansen C W M et al. Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist[J]. ACS Nano, 14, 9832-9839(2020).

    [8] Zhang W, Wang H, Wang H T et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers[J]. Nature Communications, 12, 112(2021).

    [9] Ruan Q F, Zhang W, Wang H et al. Reconfiguring colors of single relief structures by directional stretching[J]. Advanced Materials, 34, 2108128(2022).

    [10] Liu B R, Dong B, Xin C et al. 4D direct laser writing of submerged structural colors at the microscale[J]. Small, 19, 2204630(2023).

    [11] Zhao Y Y, Jin F, Dong X Z et al. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology[J]. Opto-Electronic Engineering, 50, 220048(2023).

    [12] Mettry M, Worthington M A, Au B et al. Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography[J]. RSC Advances, 11, 22633-22639(2021).

    [13] Cao C, Qiu Y W, Guan L L et al. Dip-in photoresist for photoinhibited two-photon lithography to realize high-precision direct laser writing on wafer[J]. ACS Applied Materials & Interfaces, 14, 31332-31342(2022).

    [14] Zhang W, Wang H, Wang H T et al. 2.5D, 3D and 4D printing in nanophotonics-a progress report[J]. Materials Today: Proceedings, 70, 304-309(2022).

    [15] Gan Z S, Turner M D, Gu M. Biomimetic gyroid nanostructures exceeding their natural origins[J]. Science Advances, 2, e1600084(2016).

    [16] Sakellari I, Kabouraki E, Gray D et al. Diffusion-assisted high-resolution direct femtosecond laser writing[J]. ACS Nano, 6, 2302-2311(2012).

    [17] Kats M A, Blanchard R, Genevet P et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 12, 20-24(2013).

    [18] Zhou L W, Yang L L, Liu Y et al. Dynamic structural color from wrinkled thin films[J]. Advanced Optical Materials, 8, 2000234(2020).

    [19] Goodling A E, Nagelberg S, Kaehr B et al. Colouration by total internal reflection and interference at microscale concave interfaces[J]. Nature, 566, 523-527(2019).

    [20] Wu P P, Wang J X, Jiang L. Bio-inspired photonic crystal patterns[J]. Materials Horizons, 7, 338-365(2020).

    [21] Neubrech F, Duan X Y, Liu N. Dynamic plasmonic color generation enabled by functional materials[J]. Science Advances, 6, eabc2709(2020).

    [22] Shao L, Zhuo X L, Wang J F. Advanced plasmonic materials for dynamic color display[J]. Advanced Materials, 30, 1704338(2018).

    [23] Kristensen A, Yang J K W, Bozhevolnyi S I et al. Plasmonic colour generation[J]. Nature Reviews Materials, 2, 16088(2017).

    [24] Dong Z G, Ho J F, Yu Y F et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space[J]. Nano Letters, 17, 7620-7628(2017).

    [25] Yang W H, Xiao S M, Song Q H et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 11, 1864(2020).

    [26] Badloe T, Kim J, Kim I et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks[J]. Light: Science & Applications, 11, 118(2022).

    [27] Zhang D Y, Men L Q, Chen Q Y. Femtosecond laser fabricated polymeric grating for spectral tuning[J]. Journal of Physics Communications, 2, 095016(2018).

    [28] Chan J Y E, Ruan Q F, Wang H T et al. Full geometric control of hidden color information in diffraction gratings under angled white light illumination[J]. Nano Letters, 22, 8189-8195(2022).

    [29] Nawrot M, Zinkiewicz Ł, Włodarczyk B et al. Transmission phase gratings fabricated with direct laser writing as color filters in the visible[J]. Optics Express, 21, 31919-31924(2013).

    [30] Wei S, Tao T H. Angle independent full-color photonic crystals by direct laser writing[C], 998-1001(2022).

    [31] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [32] Mizeikis V, Purlys V, Buividas R et al. Realization of structural color by direct laser write technique in photoresist[J]. Journal of Laser Micro, 9, 42-45(2014).

    [33] Liu H L, Wang H T, Wang H et al. High-order photonic cavity modes enabled 3D structural colors[J]. ACS Nano, 16, 8244-8252(2022).

    [34] Zyla G, Kovalev A, Grafen M et al. Generation of bioinspired structural colors via two-photon polymerization[J]. Scientific Reports, 7, 17622(2017).

    [35] Zyla G, Kovalev A, Gurevich E L et al. Printing structural colors via direct laser writing[J]. Proceedings of SPIE, 10544, 105440W(2018).

    [36] Zyla G, Kovalev A, Heisterkamp S et al. Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization[J]. Optical Materials Express, 9, 2630-2638(2019).

    [37] Zyla G, Kovalev A, Gurevich E L et al. Structural colors with angle-insensitive optical properties generated by Morpho-inspired 2PP structures[J]. Applied Physics A, 126, 740(2020).

    [38] Zyla G, Kovalev A, Esen C et al. Two-photon polymerization as a potential manufacturing tool for biomimetic engineering of complex structures found in nature[J]. Journal of Optical Microsystems, 2, 031203(2022).

    [39] Gu H C, Liu X J, Mu Z D et al. Wide-gamut biomimetic structural colors from interference-assisted two-photon polymerization[J]. ACS Applied Materials & Interfaces, 13, 60648-60659(2021).

    [40] Cao X B, Du Y, Guo Y J et al. Replicating the cynandra opis butterfly’s structural color for bioinspired bigrating color filters[J]. Advanced Materials, 34, 2109161(2022).

    [41] Wu L Y, Han Z W, Song Y Q et al. Replication of butterfly scales nano-structure with two-photon polymerization method and the optical effect analysis[J]. Applied Mechanics and Materials, 101/102, 1006-1009(2011).

    [42] Hsiung B K, Siddique R H, Jiang L J et al. Tarantula-inspired noniridescent photonics with long-range order[J]. Advanced Optical Materials, 5, 1600599(2017).

    [43] Hsiung B K, Siddique R H, Stavenga D G et al. Rainbow peacock spiders inspire miniature super-iridescent optics[J]. Nature Communications, 8, 2278(2017).

    [44] Chan J Y E, Ruan Q F, Jiang M H et al. High-resolution light field prints by nanoscale 3D printing[J]. Nature Communications, 12, 3728(2021).

    [45] Wang H, Ruan Q F, Wang H T et al. Full color and grayscale painting with 3D printed low-index nanopillars[J]. Nano Letters, 21, 4721-4729(2021).

    [46] Raut H K, Wang H, Ruan Q F et al. Hierarchical colorful structures by three-dimensional printing of inverse opals[J]. Nano Letters, 21, 8602-8608(2021).

    [47] Liu K L, Ding H B, Li S et al. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography[J]. Nature Communications, 13, 4563(2022).

    [48] Lopez-Garcia M, Masters N, O’Brien H E et al. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae[J]. Science Advances, 4, eaan8917(2018).

    [49] Kim H, Ge J P, Kim J et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal[J]. Nature Photonics, 3, 534-540(2009).

    [50] Huang M T, Tan A J, Büttner F et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping[J]. Nature Communications, 10, 5030(2019).

    [51] Wang H T, Wang H, Ruan Q F et al. Coloured vortex beams with incoherent white light illumination[J]. Nature Nanotechnology, 18, 264-272(2023).

    [52] Forbes A, Perumal L. Twisted light gets a splash of colour[J]. Nature Nanotechnology, 18, 221-222(2023).

    [53] Qian J, Delaney C, Zhang X A et al. Direct laser writing of submicron photonic arrays for vapor-responsive sensing[C], Th1E.6(2022).

    [54] Zhang W, Wang H, Tan A T L et al. Stiff shape memory polymers for high-resolution reconfigurable nanophotonics[J]. Nano Letters, 22, 8917-8924(2022).

    [55] Zhao Y Y, Luo H C, Liang Z X et al. Micro-nano 3D printing based on photopolymerization and its development status and trends[J]. Chinese Journal of Lasers, 49, 1002703(2022).

    [56] Koepele C A, Guix M, Bi C H et al. 3D-printed microrobots with integrated structural color for identification and tracking[J]. Advanced Intelligent Systems, 2, 1900147(2020).

    [57] Yang S H, Ding C L, Zhu D Z et al. High-speed two-photon lithography based on femtosecond laser[J]. Opto-Electronic Engineering, 50, 220133(2023).

    [58] Ouyang W Q, Xu X Y, Lu W P et al. Ultrafast 3D nanofabrication via digital holography[J]. Nature Communications, 14, 1716(2023).

    [59] Vyatskikh A, Ng R C, Edwards B et al. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals[J]. Nano Letters, 20, 3513-3520(2020).

    [60] Song S C, Li Y J, Yao Z F et al. 3D laser nanoprinting of optically functionalized structures with effective-refractive-index tailorable TiO2 nanoparticle-doped photoresin[J]. Nanomaterials, 12, 55(2021).

    [61] Cencillo-Abad P, Franklin D, Mastranzo-Ortega P et al. Ultralight plasmonic structural color paint[J]. Science Advances, 9, eadf7207(2023).

    [62] Yu S X, Zhang Q A, Wang Y F et al. Photonic-structure colored radiative coolers for daytime subambient cooling[J]. Nano Letters, 22, 4925-4932(2022).

    Sihua Su, Kaiyang Wang, Can Huang, Limin Jin, Shumin Xiao, Qifeng Ruan. Advances in Structural Color Research Based on Two-Photon Polymerization 3D Printing Technology[J]. Chinese Journal of Lasers, 2023, 50(18): 1813007
    Download Citation