• Photonics Research
  • Vol. 3, Issue 5, B1 (2015)
Alan Y. Liu1、*, Sudharsanan Srinivasan2, Justin Norman1, Arthur C. Gossard1、2, and John E. Bowers1、2
Author Affiliations
  • 1Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 2Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara,California 93106, USA
  • show less
    DOI: 10.1364/prj.3.0000b1 Cite this Article Set citation alerts
    Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, John E. Bowers. Quantum dot lasers for silicon photonics [Invited][J]. Photonics Research, 2015, 3(5): B1 Copy Citation Text show less
    References

    [1] D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

    [2] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

    [3] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).

    [4] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).

    [5] O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).

    [6] J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent 5,075,742 (December 24, 1991).

    [7] J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).

    [8] K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum- dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).

    [9] Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).

    [10] J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiplelayer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).

    [11] Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “Highperformance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).

    [12] T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).

    [13] A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuouswave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).

    [14] S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).

    [15] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

    [16] D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

    [17] D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

    [18] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuouswave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

    [19] Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33, 1223–1229 (2014).

    [20] D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

    [21] C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laserdriven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

    [22] K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).

    [23] K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “Hightemperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).

    [24] K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.

    [25] Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metalstripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).

    [26] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

    [27] R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).

    [28] L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).

    [29] C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).

    [30] A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

    [31] Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

    [32] J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).

    [33] X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/ GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).

    [34] L. Kimerling, “Recombination enhanced defect reactions,” Solid- State Electron. 21, 1391–1401 (1978).

    [35] A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

    [36] P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).

    [37] R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).

    [38] R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).

    [39] E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).

    [40] X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).

    [41] M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).

    [42] A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).

    [43] S. Zamek, L. Feng, M. Khajavikhan, D. T. Tan, M. Ayache, and Y. Fainman, “Micro-resonator with metallic mirrors coupled to a bus waveguide,” Opt. Express 19, 2417–2425 (2011).

    [44] D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflectorassisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).

    [45] J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).

    [46] S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).

    [47] E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).

    [48] M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).

    [49] V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).

    CLP Journals

    [1] Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307

    [2] Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, John E. Bowers. Integrated dispersion compensated mode-locked quantum dot laser[J]. Photonics Research, 2020, 8(9): 1428

    [3] Marco Saldutti, Alberto Tibaldi, Federica Cappelluti, Mariangela Gioannini. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 2020, 8(8): 1388

    [4] Bozhang Dong, Jianan Duan, Heming Huang, Justin C. Norman, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, John E. Bowers, Frédéric Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch[J]. Photonics Research, 2021, 9(8): 1550

    [5] Mengya Liao, Siming Chen, Zhixin Liu, Yi Wang, Lalitha Ponnampalam, Zichuan Zhou, Jiang Wu, Mingchu Tang, Samuel Shutts, Zizhuo Liu, Peter M. Smowton, Siyuan Yu, Alwyn Seeds, Huiyun Liu. Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon[J]. Photonics Research, 2018, 6(11): 1062

    [6] Ruitong Zhao, Ruisheng Liang. Quantum information transfer between photonic and quantum-dot spin qubits[J]. Chinese Optics Letters, 2016, 14(6): 062701

    Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, John E. Bowers. Quantum dot lasers for silicon photonics [Invited][J]. Photonics Research, 2015, 3(5): B1
    Download Citation