[2] Keshava N, Mustard J F. Spectral unmixing [J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57.
[4] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data [C]// Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, 1995: 127556070.
[5] Winter M E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data [J]. Proc. SPIE, 1999, 3753: 266-275.
[6] Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[7] Palsson B, Sveinsson J R, Ulfarsson M O. Blind hyperspectral unmixing using autoencoders: A critical comparison [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1340-1372.
[8] Su Y, Marinoni A, Li J, et al. Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1427-1431.
[9] Palsson B, Sigurdsson J, Sveinsson J R, et al. Hyperspectral unmixing using a neural network autoencoder [J]. IEEE Access, 2018, 6: 25646-25656.
[10] Palsson B, Ulfarsson M O, Sveinsson J R. Convolutional autoencoder for spatial-spectral hyperspectral unmixing [C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 357-360.
[11] Gao L, Han Z, Hong D, et al. CyCU-Net: Cycle-consistency unmixing network by learning cascaded autoencoders [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
[12] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30: 6000-6010.
[13] Ghosh P, Roy S K, Koirala B, et al. Hyperspectral unmixing using transformer network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
[14] Yang Z, Xu M, Liu S, et al. UST-Net: A U-shaped transformer network using shifted windows for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
[15] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv: 2010.11929, 2020.
[16] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]// Proc. of the IEEE/CVF International Conf. on Computer Vision, 2021: 10012-10022.