• Frontiers of Optoelectronics
  • Vol. 6, Issue 3, 261 (2013)
Xiaoliu ZUO and Zhijun SUN*
Author Affiliations
  • Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
  • show less
    DOI: 10.1007/s12200-013-0340-z Cite this Article
    Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Frontiers of Optoelectronics, 2013, 6(3): 261 Copy Citation Text show less
    References

    [1] Pavesi L, Guillot G, eds. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006

    [2] Wehrspohn R B, Kitzerow H S, Busch K, eds. Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA, 2007

    [3] Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008

    [4] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209-1211

    [5] Bozhevolnyi S I. Plasmonic Nanoguides and Circuits. Singapore: Pan Stanford Publishing Pte Ltd, 2009

    [6] Vlasov Y A, McNab S J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Optics Express, 2004, 12(8): 1622-1631

    [7] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496-500

    [8] Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646-16653

    [9] Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Optics Express, 2010, 18(1): 348-363

    [10] Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express, 2010, 18(11): 11728-11736

    [11] Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106

    [12] Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808-2813

    [13] Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958-17966

    [14] Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metaloxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters, 2011, 98(2): 021107

    [15] Kim J T, Choi S E. Hybric plasmonic slot waveguides with sidewall slope. IEEE Photonics Technology Letters, 2012, 24(3): 170-172

    [16] Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379-8393

    [17] Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481-1483

    [18] Sun Z, Zuo X, Li J, Liu B. Hybridized low-loss plasmonic-optical waveguides for ultra-compact integration. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7874: 78470O

    [19] Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters, 2011, 36(15): 2946-2948

    [20] Takano T, Hamasaki J. Propagating modes of a metal-claddielectric-slab waveguide for integrated optics. IEEE Journal of Quantum Electronics, 1972, 8(2): 206-212

    [21] Dai D, Shi Y, He S. Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide. Applied Optics, 2007, 46(7): 1126-1131

    Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Frontiers of Optoelectronics, 2013, 6(3): 261
    Download Citation