• PhotoniX
  • Vol. 5, Issue 1, 8 (2024)
Yonglei Liu1, Zhen Dong1, Yimeng Zhu1, Haiyun Wang2, Fei Wang1、*, Yahong Chen1、**, and Yangjian Cai3、4、***
Author Affiliations
  • 1School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 2Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 4Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.1186/s43074-024-00126-7 Cite this Article
    Yonglei Liu, Zhen Dong, Yimeng Zhu, Haiyun Wang, Fei Wang, Yahong Chen, Yangjian Cai. Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light[J]. PhotoniX, 2024, 5(1): 8 Copy Citation Text show less
    References

    [1] Rubinsztein-Dunlop H, Forbes A, Berry MV, et al. Roadmap on structured light. J Opt. 2017;19:013001.

    [2] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photon. 2021;15:253.

    [3] Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett. 2015;40:4887–90.

    [4] Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett. 2015;40:4843–6.

    [5] Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull. 2020;65:2072–9.

    [6] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340:1545.

    [7] Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020;1:13.

    [8] Larocque H, D’Errico A, Ferrer-Garcia MF, Carmi A, Cohen E, Karimi E. Optical framed knots as information carriers. Nat Commun. 2020;11:5119.

    [9] Kong L, Zhang W, Li P, Guo X, Zhang J, Zhang F, Zhao J, Zhang X. High capacity topological coding based on nested vortex knots and links. Nat Commun. 2022;13:2705.

    [10] Chao H, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl. 2022;11:1–17.

    [11] Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H. Different channels to transmit information in scattering media. PhotoniX. 2023;9:3629.

    [12] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett. 1995;20:767–9.

    [13] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett. 2000;25:887–9.

    [14] Liu S, Guo C, Sheridan JT. A review of optical image encryption techniques. Opt Laser Technol. 2014;57:327–42.

    [15] Javidi B, Carnicer A, Yamaguchi M, et al. Roadmap on optical security. J Opt. 2016;18:083001.

    [16] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photon. 2019;14:102–8.

    [17] Qu G, Yang W, Song Q, Liu Y, Qiu C-W, Han J, Tsai D-P, Xiao S. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020;11:5484.

    [18] Guo X, Zhong J, Li B, Qi S, Li Y, Li P, Wen D, Liu S, Wei B, Zhao J. Full-color holographic display and encryption with full-polarization degree of freedom. Adv Mater. 2022;34:2103192.

    [19] Ouyang M, Yu H, Pan D, Wan L, Zhang C, Gao S, Feng T, Li Z. Optical encryption in spatial frequencies of light fields with metasurfaces. Optica. 2022;9:1022–8.

    [20] Guo X, Li P, Zhong J, Wen D, Wei B, Liu S, Qi S, Zhao J. Stokes meta-hologram toward optical cryptography. Nat Commun. 2022;13:6687.

    [21] Goodman JW. Speckle phenomena in optics: theory and applications. Roberts and Company Publishers; 2007.

    [22] Andrews LC, Phillips RL. Laser Beam Propagation through Random Media. 2nd ed. SPIE; 2005.

    [23] Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon. 2012;6:355–9.

    [24] Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A. 2014;31:2038–45.

    [25] Peng Y, Choi S, Kim J, Wetzstein G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci Adv. 2021;7:5040.

    [26] Zhu L, Soldevila F, Moretti C, dArco A, Boniface A, Shao X, de Aguiar HB, Gigan S. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat Commun. 2022;13:1447.

    [27] Chen Y, Ponomarenko SA, Cai Y. Experimental generation of optical coherence lattices. Appl Phys Lett. 2016;109:061107.

    [28] Peng D, Huang Z, Liu Y, Chen Y, Wang F, Ponomarenko SA, Cai Y. Optical coherence encryption with structured random light. PhotoniX. 2021;2:6.

    [29] Yu J, Zhu X, Wang F, Chen Y, Cai Y. Research progress on manipulating spatial coherence structure of light beam and its applications. Prog Quantum Electron. 2023;91:100486.

    [30] Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited]. J Opt Soc Am A. 2014;31:2083–96.

    [31] Liang C, Wu G, Wang F, Li W, Cai Y, Ponomarenko SA. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt Express. 2017;25:28352–62.

    [32] Jin Y, Wang H, Liu L, Chen Y, Wang F, Cai Y. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Opt Express. 2022;30:9548–61.

    [33] Liu Y, Chen Y, Wang F, Cai Y, Liang C, Korotkova O. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv. 2021;4:210027.

    [34] Liu Y, Zhang X, Dong Z, Peng D, Chen Y, Wang F, Cai Y. Robust far-field optical image transmission with structured random light beams. Phys Rev Appl. 2022;17:024043.

    [35] Yu J, Xu Y, Lin S, Zhu X, Gbur G, Cai Y. Longitudinal optical trapping and manipulating Rayleigh particles by spatial nonuniform coherence engineering. Phys Rev A. 2022;106:033511.

    [36] Chen Y, Wang F, Cai Y. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv Phys X. 2022;7:2009742.

    [37] Lin R, Chen M, Liu Y, Zhang H, Gbur G, Cai Y, Yu J. Measuring refractive indices of a uniaxial crystal by structured light with non-uniform correlation. Opt Lett. 2021;46:2268–71.

    [38] Li W, Wu D, Chen Y, Cai Y, Korotkova O, Wang F. Sensing azimuthally symmetric objects by a single-pixel detector via COAM matrix. Appl Phys Lett. 2023;122:251106.

    [39] Zhao X, Wang Z, Lu X, Zhang H, Zhu J, Gao J, Zhan Q, Cai Y, Zhao C. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams. Laser Photonics Rev. 2023;17:2300318.

    [40] Korotkova O, Wolf E. Generalized Stokes parameters of random electromagnetic beams. Opt Lett. 2005;30:198–200.

    [41] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University; 1995.

    [42] Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007;32:3531–3.

    [43] Gori F, Ramírez-Sánchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. J Opt A. 2009;11:085706.

    [44] Chen Y, Wang F, Liu L, Zhao C, Cai Y, Korotkova O. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys Rev A. 2014;89:013801.

    [45] Dong Z, Chen Y, Wang F, Cai Y, Friberg AT, Setälä T. Encoding Higher-Order Polarization States into Robust Partially Coherent Optical Beams. Phys Rev Appl. 2022;18:034036.

    [46] Dong Z, Zhu Y, Liu Y, Wang F, Cai Y, Setälä T, Chen Y. Compact generation of light beams carrying robust higher-order Poincaré polarization states. Appl Phys Lett. 2023;122:221101.

    [47] Yuan B, Dong Z, Liu Y, Wang F, Cai Y, Chen Y. Robust high-order polarization arrays via vectorial spatial-coherence engineering. Phys Rev Appl. 2023;20:054031.

    [48] Gil JJ, Ossikovski R. Polarized Light and the Mueller Matrix Approach. 2nd ed. Boca Raton: CRC Press; 2022.

    [49] Setälä T, Tervo J, Friberg AT. Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence. Opt Lett. 2006;31:2669–71.

    [50] Setälä T, Tervo J, Friberg AT. Stokes parameters and polarization contrasts in Young’s interference experiment. Opt Lett. 2006;31:2208–10.

    [51] Tervo J, Setälä T, Roueff A, Réfrégier P, Friberg AT. Two-point Stokes parameters: interpretation and properties. Opt Lett. 2009;34:3074–6.

    [52] Tervo J, Setälä T, Turunen J, Friberg AT. Van Cittert-Zernike theorem with Stokes parameters. Opt Lett. 2013;38:2301–3.

    [53] Huang Z, Chen Y, Wang F, Ponomarenko SA, Cai Y. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown-Twiss experiment. Phys Rev Appl. 2020;13:044042.

    [54] Dong Z, Huang Z, Chen Y, Wang F, Cai Y. Measuring complex correlation matrix of partially coherent vector light via a generalized Hanbury Brown-Twiss experiment. Opt Express. 2020;28:20634–44.

    [55] Voelz D, Xiao X, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Opt Lett. 2015;40:352–5.

    [56] Liu Y, Dong Z, Wang F, Cai Y, Chen Y. Experimental synthesis of higher-order Poincaré sphere beam array with spatial coherence engineering. Appl Phys Lett. 2023;122:161106.

    [57] Hyde MW IV. Generating electromagnetic Schell-model sources using complex screens with spatially varying auto-and cross-correlation functions. Res Phys. 2019;15:102663.

    [58] Zhu X, Yu J, Chen Y, Wang F, Cai Y. Generation of Stochastic Structured Light Beams with Controllable Beam Parameters. ACS Photon. 2023;10:2272–9.

    [59] Takeda M, Wang W, Naik DN, Singh RK. Spatial statistical optics and spatial correlation holography: a review. Opt Rev. 2014;21:849–61.

    [60] Peng D, Zhang X, Liu Y, Zhu Y, Chen Y, Wang F, Cai Y. Imaging through random scatterer with spatial coherence structure measurement. Front Phys. 2022;9:828487.

    [61] Kellman P, McVeigh E. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med. 2005;54:1439–47.

    Yonglei Liu, Zhen Dong, Yimeng Zhu, Haiyun Wang, Fei Wang, Yahong Chen, Yangjian Cai. Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light[J]. PhotoniX, 2024, 5(1): 8
    Download Citation