• Photonics Research
  • Vol. 13, Issue 5, 1385 (2025)
Jianfeng He, Xinyi Zhao, Jian-Bin Xu, and Xiankai Sun*
Author Affiliations
  • Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
  • show less
    DOI: 10.1364/PRJ.550518 Cite this Article Set citation alerts
    Jianfeng He, Xinyi Zhao, Jian-Bin Xu, Xiankai Sun, "Lithium tantalate microring cavities with a Q factor exceeding 10 million," Photonics Res. 13, 1385 (2025) Copy Citation Text show less
    References

    [1] A. Guarino, G. Poberaj, D. Rezzonico. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).

    [2] C. Wang, M. J. Burek, Z. Lin. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [3] J. Wang, F. Bo, S. Wan. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072-23078(2015).

    [4] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [5] M. Zhang, C. Wang, R. Cheng. Monolithic ultra-high-lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [6] D. Zhu, L. B. Shao, M. J. Yu. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [7] M. Y. Xu, Y. T. Zhu, F. Pittalà. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [8] K. R. Parameswaran, R. K. Route, J. R. Kurz. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179-181(2002).

    [9] F. Ye, Y. Yu, X. Xi. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photonics Rev., 16, 2100429(2022).

    [10] Z. J. Yu, X. K. Sun. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 8, 798-803(2021).

    [11] J. G. C. Li, J. Lin, R. Gao. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching. Opt. Express, 31, 31556-31562(2023).

    [12] M. Zhang, B. Buscaino, C. Wang. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [13] C. Wang, M. Zhang, M. J. Yu. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [14] X. F. Xiao, S. J. Liang, J. S. Si. Performance of LiTaO3 crystals and thin films and their application. Crystals, 13, 1233(2023).

    [15] C. L. Wang, Z. H. Li, J. Riemensberger. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 629, 784-790(2024).

    [16] J. Y. Yu, Z. L. Ruan, Y. Xue. Tunable and stable micro-ring resonator based on thin-film lithium tantalate. APL Photonics, 9, 036115(2024).

    [17] M. V. Jacob, J. G. Hartnett, J. Mazierska. Temperature dependence of permittivity and loss tangent of lithium tantalate at microwave frequencies. IEEE Trans. Microw. Theory, 52, 536-541(2004).

    [18] K. Powell, X. D. Li, D. Assumpcao. DC-stable electro-optic modulators using thin-film lithium tantalate. Opt. Express, 32, 44115-44122(2024).

    [19] C. L. Wang, D. Y. Fang, A. Kotz. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica, 11, 1614-1620(2024).

    [20] R. J. Zhuang, J. Z. He, Y. F. Qi. High-Q thin-film lithium niobate microrings fabricated with wet etching. Adv. Mater., 35, 2208113(2023).

    [21] G. Ulliac, V. Calero, A. Ndao. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater., 53, 1-5(2016).

    [22] X. W. Liu, C. Z. Sun, B. Xiong. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt. Express, 25, 587-594(2017).

    [23] X. R. Zhu, Y. W. Hu, S. Y. Lu. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate. Photonics Res., 12, A63-A68(2024).

    [24] J. Wang, B. W. Zhu, Z. Z. Hao. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express, 24, 21869-21879(2016).

    [25] Y. T. Xu, M. H. Shen, J. J. Lu. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express, 29, 5497-5504(2021).