• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0601003 (2023)
Huan Song, Miao Hu*, Mengmeng Xu, Haozhen Li, Meihua Bi, Xuefang Zhou, and Chengzhu Shen
Author Affiliations
  • College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang , China
  • show less
    DOI: 10.3788/CJL220733 Cite this Article Set citation alerts
    Huan Song, Miao Hu, Mengmeng Xu, Haozhen Li, Meihua Bi, Xuefang Zhou, Chengzhu Shen. Gain‐Switched Dual‐Wavelength Synchronized Pulsed Nd:GdVO4 Laser[J]. Chinese Journal of Lasers, 2023, 50(6): 0601003 Copy Citation Text show less
    References

    [1] Dai S B, Tu Z H, Zhu S Q et al. Frequency expansion of orthogonally polarized dual-wavelength laser by cascaded stimulated Raman scattering[J]. Optics Letters, 44, 3705-3708(2019).

    [2] Fei L G, Zhang S L. The discovery of nanometer fringes in laser self-mixing interference[J]. Optics Communications, 273, 226-230(2007).

    [3] Abdelsalam D G, Magnusson R, Kim D. Single-shot, dual-wavelength digital holography based on polarizing separation[J]. Applied Optics, 50, 3360-3368(2011).

    [4] Tahara T, Mori R, Kikunaga S et al. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms[J]. Optics Letters, 40, 2810-2813(2015).

    [5] Li D J, Gao J H, Cui A J et al. Research on space-borne dual-wavelength land-sea LiDAR system with 2 m diffractive aperture[J]. Chinese Journal of Lasers, 49, 0310001(2022).

    [6] Li K P, He Y, Hou C H et al. Detection of chlorophyll profiles from coastal to oceanic water by dual-wavelength ocean lidar[J]. Chinese Journal of Lasers, 48, 2010002(2021).

    [7] Cao N W, Yang S P, Cao S J et al. Accuracy calculation for lidar ratio and aerosol size distribution by dual-wavelength lidar[J]. Applied Physics A, 125, 590(2019).

    [8] Zhao P, Ragam S, Ding Y J et al. Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers[J]. Applied Physics Letters, 98, 131106(2011).

    [9] Pawar A Y, Sonawane D D, Erande K B et al. Terahertz technology and its applications[J]. Drug Invention Today, 5, 157-163(2013).

    [10] Zhang Z W, Zhao Y J, Miao Y X et al. Terahertz nondestructive testing imaging technology based on linear frequency modulation mechanism[J]. Acta Optica Sinica, 42, 0411002(2022).

    [11] Zhao P, Ragam S, Ding Y J et al. Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses[J]. Optics Letters, 36, 4818-4820(2011).

    [12] Chen M T, Dai S B, Tu Z H et al. Frequency expansion of efficient passively Q-switched orthogonally-polarized dual-wavelength laser[J]. Optics & Laser Technology, 122, 105846(2020).

    [13] Wu B, Jiang P P, Yang D Z et al. Compact dual-wavelength Nd∶ GdVO4 laser working at 1063 nm and 1065 nm[J]. Optics Express, 17, 6004-6009(2009).

    [14] Huang Y P, Cho C Y, Huang Y J et al. Orthogonally polarized dual-wavelength Nd∶LuVO4 laser at 1086 nm and 1089 nm[J]. Optics Express, 20, 5644-5651(2012).

    [15] Xu C W, Tang D Y, Zhu H Y et al. Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity[J]. Laser Physics Letters, 10, 095702(2013).

    [16] Link S M, Klenner A, Mangold M et al. Dual-comb modelocked laser[J]. Optics Express, 23, 5521-5531(2015).

    [17] Wu C T, Chang A L, Wen Y et al. Research progress of Nd3+-doped dual-wavelength all-solid-state laser[J]. Chinese Journal of Luminescence, 41, 414-428(2020).

    [18] Hong K G, Wei M D. Simultaneous dual-wavelength pulses achieved by mixing spiking and passive Q-switching in a pulsed Nd∶GdVO 4 laser with a Cr4+∶YAG saturable absorber[J]. Optics Letters, 41, 2153-2156(2016).

    [19] Liang H C, Li D, Lin E H et al. Investigation of the antiphase dynamics of the orthogonally polarized passively Q-switched Nd∶YLF laser[J]. Optics Express, 26, 26590-26597(2018).

    [20] Dong J, Ueda K I, Yagi H et al. Laser-diode pumped self-Q-switched microchip lasers[J]. Optical Review, 15, 57-74(2008).

    [21] Wang Y, Huang L, Gong M et al. 1 MHz repetition rate single-frequency gain-switched Nd∶YAG microchip laser[J]. Laser Physics Letters, 4, 580-583(2007).

    [22] Sheng F, Li D M, Chen J et al. Study on gain-switched Nd3+∶YVO4 microplate laser[J]. Chinese Journal of Lasers, 31, 61-63(2004).

    [23] Hu M, Chen J, Ge J H et al. Temporal characteristics of the gain-switched microchip laser[J]. Chinese Journal of Lasers, 34, 475-480(2007).

    [24] Xia M Y, Hu M, Zhou H M et al. Experimental research on power-balanced Nd∶YVO4/Nd∶GdVO4 dual-wavelength laser[J]. Acta Photonica Sinica, 49, 0414003(2020).

    [25] Koechner W[M]. Sun W, Jiang Z W, Cheng G X, Transl. Solid-state laser engineering, 98-182(2002).

    Huan Song, Miao Hu, Mengmeng Xu, Haozhen Li, Meihua Bi, Xuefang Zhou, Chengzhu Shen. Gain‐Switched Dual‐Wavelength Synchronized Pulsed Nd:GdVO4 Laser[J]. Chinese Journal of Lasers, 2023, 50(6): 0601003
    Download Citation