• Chinese Optics Letters
  • Vol. 19, Issue 5, 051301 (2021)
Yunzheng Wang1、2, Qing Wu1、3, Huide Wang1, Jiefeng Liu1, Zheng Zheng3、4, Meng Zhang3、*, and Han Zhang1
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2Singapore University of Technology and Design, Singapore 487372, Singapore
  • 3School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • 4Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China
  • show less
    DOI: 10.3788/COL202119.051301 Cite this Article Set citation alerts
    Yunzheng Wang, Qing Wu, Huide Wang, Jiefeng Liu, Zheng Zheng, Meng Zhang, Han Zhang. Thermally tunable microfiber knot resonator with flexible graphene heater[J]. Chinese Optics Letters, 2021, 19(5): 051301 Copy Citation Text show less
    References

    [1] Z. P. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photon., 10, 227(2016).

    [2] C. T. Phare, Y.-H. D. Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon., 9, 511(2015).

    [3] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photon., 4, 518(2010).

    [4] Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, H. Zhang. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol., 4, 1800532(2019).

    [5] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon. Rev., 13, 1800313(2019).

    [6] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64(2011).

    [7] Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenlowe, K. J. Jin, N. A. Mortensen, S. Xiao. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 9, 15576(2017).

    [8] J. T. Kim, K. H. Chung, C. G. Choi. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt. Express, 21, 15280(2013).

    [9] K. Wu, Y. F. Wang, C. Y. Qiu, J. P. Chen. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res., 6, C22(2018).

    [10] L. H. Yu, Y. L. Yin, Y. C. Shi, D. X. Dai, S. L. He. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3, 159(2016).

    [11] S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, Q. Bao. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7, 20249(2015).

    [12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [13] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).

    [14] H. Jiang, Y. Tang, X. Zeng, R. Xiao, P. Lü, L. Wang, Y. Lu. Visual measurement of the microscopic temperature of porous graphene based on cholesteric liquid crystal microcapsules. Chin. Opt. Lett., 18, 031201(2020).

    [15] C. Zhao, Q. Huang, M. A. Araimi, A. Rozhin, S. Sergeyev, C. Mou. Observation of chaotic polarization attractors from a graphene mode locked soliton fiber laser. Chin. Opt. Lett., 17, 020012(2019).

    [16] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351(2008).

    [17] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677(2012).

    [18] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photon., 4, 611(2010).

    [19] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett., 8, 902(2008).

    [20] L. H. Yu, D. X. Dai, S. L. He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl. Phys. Lett., 105, 251104(2014).

    [21] A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater., 10, 569(2011).

    [22] Y. Yu, Q. Bian, N. Zhang, Y. Lu, X. Zhang, J. Yang. Investigation on an all-optical intensity modulator based on an optical microfiber coupler. Chin. Opt. Lett., 16, 040605(2018).

    [23] J. Y. Lou, Y. P. Wang, L. M. Tong. Microfiber optical sensors: a review. Sensors, 14, 5823(2014).

    [24] P. Wang, Y. P. Wang, L. M. Tong. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light-Sci. Appl., 2, e102(2013).

    [25] L. M. Tong. Micro/nanofibre optical sensors: challenges and prospects. Sensors, 18, 903(2018).

    [26] C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. X. Liu, L. M. Tong. Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater., 23, 3770(2011).

    [27] Y. D. Wang, X. T. Gan, C. Y. Zhao, L. Fang, D. Mao, Y. P. Xu, F. L. Zhang, T. L. Xi, L. Y. Ren, J. L. Zhao. All-optical control of microfiber resonator by graphene’s photothermal effect. Appl. Phys. Lett., 108, 171905(2016).

    [28] L. T. Gai, J. Li, Y. Zhao. Preparation and application of microfiber resonant ring sensors: a review. Opt. Laser Technol., 89, 126(2017).

    [29] M. Bahadoran, A. Afroozeh, J. Ali, P. P. Yupapin. Slow light generation using microring resonators for optical buffer application. Opt. Eng., 51, 044601(2012).

    [30] A. Godbole, P. P. Dali, V. Janyani, T. Tanabe, G. Singh. All optical scalable logic gates using Si3N4 microring resonators. IEEE J. Sel. Top. Quantum Electron., 22, 5900308(2016).

    [31] F. S. Al-Hazmi, G. W. Beall, A. A. Al-Ghamdi, A. Alshahrie, F. S. Shokr, W. E. Mahmoud. Raman and ellipsometry spectroscopic analysis of graphene films grown directly on Si substrate via CVD technique for estimating the graphene atomic planes number. J. Mol. Struct., 1118, 275(2016).

    [32] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47(2012).

    [33] C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, J. Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep., 7, 17046(2017).

    [34] L. F. Stokes, M. Chodorow, H. J. Shaw. All-single-mode fiber resonator. Opt. Lett., 7, 288(1982).

    [35] S.-C. Yan, B.-C. Zheng, J.-H. Chen, F. Xu, Y.-Q. Lu. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Appl. Phys. Lett., 107, 053502(2015).

    CLP Journals

    [1] Lingjun Yi, Changhong Li. Enhanced absorption and electrical modulation of graphene based on the parity-time symmetry optical structure[J]. Chinese Optics Letters, 2022, 20(2): 022201

    Data from CrossRef

    [1] Feng Xia, Bo Liu, Yu Ying. Systematic investigation of spectral characteristics and sensing characteristics of microfiber knot resonator. Journal of Optics, 24, 035002(2022).

    Yunzheng Wang, Qing Wu, Huide Wang, Jiefeng Liu, Zheng Zheng, Meng Zhang, Han Zhang. Thermally tunable microfiber knot resonator with flexible graphene heater[J]. Chinese Optics Letters, 2021, 19(5): 051301
    Download Citation