• Journal of Atmospheric and Environmental Optics
  • Vol. 17, Issue 5, 558 (2022)
Xuelin WANG* and Wenzhong CHEN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2022.05.008 Cite this Article
    WANG Xuelin, CHEN Wenzhong. Variation characteristics and correlation between aerosol optical depth and net primary productivity in subarctic Pacific[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 558 Copy Citation Text show less
    References

    [1] Gao Y, Duce R A. Air-sea chemical exchange in coastal oceans[J]. Advance in Earth Sciences, 1997, 12(6): 553-563.

    [2] Gao H W, Yao X H, Guo Z G, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1325-1332.

    [3] Mahowald N M, Hamilton D S, Mackey K R M, et al. Aerosol trace metal leaching and impacts on marine microorganisms[J]. Nature Communications, 2018, 9: 2614.

    [4] Liu C L, Chen H T. Atmospheric deposition of trace elements and its impact on the marine ecology systems[J]. Marine Science Bulletin, 2003, 22(2): 89-96.

    [5] Duarte C M, Dachs J, Llabrés M, et al. Aerosol inputs enhance new production in the subtropical northeast Atlantic[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G4): G04006.

    [6] Tsuda A, Takeda S, Saito H, et al. A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom[J]. Science, 2003, 300(5621): 958-961.

    [7] Boyd P W, Law C S, Wong C S, et al. The decline and fate of an iron-induced subarctic phytoplankton bloom[J]. Nature, 2004, 428(6982): 549-553.

    [8] Huang J P, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23212.

    [9] Bishop J K B, Davis R E, Sherman J T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific[J]. Science, 2002, 298(5594): 817-821.

    [10] Deng Z Q, Han Y X, Bai H Z, et al. Effect of dust aerosol production in China mainland on marine primary productivity[J]. China Environmental Science, 2008, 28(10): 872-876.

    [11] Li Y F, Chen W Z. Correlation between aerosol optical depth and ocean primary productivity based on MODIS and CALIOP data[J]. China Environmental Science, 2017, 37(1): 76-86.

    [12] Tan S C, Shi G Y, Shi J H, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G2): G02029.

    [13] Tan S C, Yao X H, Gao H W, et al. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific[J]. PLoS One, 2013, 8(2): e57656.

    [14] Wei J, Li Z Q, Peng Y R, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison[J]. Atmospheric Environment, 2019, 201: 428-440.

    [15] Behrenfeld M J, Falkowski P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1-20.

    [16] Jo C O, Lee J Y, Park K A, et al. Asian dust initiated early spring bloom in the northern East/Japan Sea[J]. Geophysical Research Letters, 2007, 34(5): L05602.

    [17] Li C C, Mao J T, Liu Q H, et al. Distribution and seasonal variation of aerosol optical depth over eastern China based on MODIS[J]. Chinese Science Bulletin, 2003, 48(19): 2094-2100.

    [18] Chen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J]. Scientia Sinica (Terrae), 2017, 47(8): 939-957.

    [19] Kumar K R, Yin Y, Sivakumar V, et al. Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88° S, 31.02° E), South Africa[J]. Atmospheric Environment, 2015, 117: 9-18.

    [20] Pace G, di Sarra A, Meloni D, et al. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types[J]. Atmospheric Chemistry and Physics, 2006, 6(3): 697-713.

    [21] Zhao X J. The Correlation and Complexity Analysis of Time Series[D]. Beijing: Beijing Jiaotong University, 2015.

    [22] Onodera J, Takahashi K, Honda M C. Pelagic and coastal diatom fluxes and the environmental changes in the northwestern North Pacific during December 1997-May 2000[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16): 2218-2239.

    [23] Asahi H, Takahashi K. A 9-year time-series of planktonic foraminifer fluxes and environmental change in the Bering Sea and the central subarctic Pacific Ocean, 1990-1999[J]. Progress in Oceanography, 2007, 72(4): 343-363.

    [24] Zhu M Y, Mu X Y, Li R X. The role of iron in primary productivity in the sea[J]. Journal of Oceanograpgy of Huanghai & Bohai Seas, 1997, 15(3): 51-56.

    [25] Duce R A, Tindale N W. Atmospheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 1991, 36(8): 1715-1726.

    [26] Yuan W, Zhang J. High correlations between Asian dust events and biological productivity in the western North Pacific[J]. Geophysical Research Letters, 2006, 33(7): L07603.

    [27] Duce R A, Unni C K, Ray B J, et al. Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: Temporal variability[J]. Science, 1980, 209(4464): 1522-1524.

    [28] Yuan W. A Preliminary Study of Influences of Dust Events in Northern China on the Regional Environments[D]. Lanzhou: Lanzhou University, 2006.

    WANG Xuelin, CHEN Wenzhong. Variation characteristics and correlation between aerosol optical depth and net primary productivity in subarctic Pacific[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 558
    Download Citation