• Acta Physica Sinica
  • Vol. 68, Issue 17, 170202-1 (2019)
Zhong-Qiang Zhang1、2、3、*, Han-Lun Liu1, Jin-Wei Fan1, Jian-Ning Ding1、2, and Guang-Gui Cheng1
Author Affiliations
  • 1Institute of Intelligent Flexible Mechanoelectronic, Jiangsu University, Zhenjiang 212013, China
  • 2Jiangsu Collaboratory Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
  • 3State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.7498/aps.68.20190531 Cite this Article
    Zhong-Qiang Zhang, Han-Lun Liu, Jin-Wei Fan, Jian-Ning Ding, Guang-Gui Cheng. Pressure-driven fluid flow characteristics in black phosphorus nanochannels[J]. Acta Physica Sinica, 2019, 68(17): 170202-1 Copy Citation Text show less
    (a) Monolayer black phosphorus models, chiral angle θis the intersection angle between water flow direction adjacent the top plate and the ripple direction of BP monolayer; (b) poiseuille flow model of water molecules in black phosphorus nanochannels.(a)单层黑磷模型图, 其中手性角度θ指黑磷褶皱方向与水分子流动方向夹角; (b)黑磷纳米通道内水分子流动的Poiseuille流模型图
    Fig. 1. (a) Monolayer black phosphorus models, chiral angle θis the intersection angle between water flow direction adjacent the top plate and the ripple direction of BP monolayer; (b) poiseuille flow model of water molecules in black phosphorus nanochannels. (a)单层黑磷模型图, 其中手性角度θ指黑磷褶皱方向与水分子流动方向夹角; (b)黑磷纳米通道内水分子流动的Poiseuille流模型图
    The velocity distribution of water molecules when the chiral angle of the model is 0°.模型手性角度为0°时水分子的速度分布
    Fig. 2. The velocity distribution of water molecules when the chiral angle of the model is 0°.模型手性角度为0°时水分子的速度分布
    Number density distribution of water molecules along the channel width in the black phosphorus nanochannels.黑磷纳米通道内水分子沿通道宽度方向的数密度分布图
    Fig. 3. Number density distribution of water molecules along the channel width in the black phosphorus nanochannels.黑磷纳米通道内水分子沿通道宽度方向的数密度分布图
    Velocity distribution diagram and potential energy cloud diagram: (a) The velocity distribution of water molecules when the chiral angle of the model is 37.4°; (b) the velocity distribution of water molecules when the chiral angle of the model is 66.6°; (c) the velocity distribution of water molecules when the chiral angle of the model is 90°; (d) potential energy cloud diagram when the chiral angle of the model is 90°.速度分布图及势能云图 (a) 模型手性角度为37.4°时水分子的速度分布; (b) 模型手性角度为66.6°时水分子的速度分布; (c) 模型手性角度为90°时水分子的速度分布; (d)模型手性角度为90°时的势能分布云图
    Fig. 4. Velocity distribution diagram and potential energy cloud diagram: (a) The velocity distribution of water molecules when the chiral angle of the model is 37.4°; (b) the velocity distribution of water molecules when the chiral angle of the model is 66.6°; (c) the velocity distribution of water molecules when the chiral angle of the model is 90°; (d) potential energy cloud diagram when the chiral angle of the model is 90°.速度分布图及势能云图 (a) 模型手性角度为37.4°时水分子的速度分布; (b) 模型手性角度为66.6°时水分子的速度分布; (c) 模型手性角度为90°时水分子的速度分布; (d)模型手性角度为90°时的势能分布云图
    Variance distribution of water molecular viscosity coefficient of a simulation system with different chirality under different acceleration conditions.不同手性的模拟系统在不同加速度条件下的水分子黏度系数方差分布图
    Fig. 5. Variance distribution of water molecular viscosity coefficient of a simulation system with different chirality under different acceleration conditions.不同手性的模拟系统在不同加速度条件下的水分子黏度系数方差分布图
    Velocity distribution of water molecules along the width of different nanochannel widths.不同纳米通道宽度内水分子沿通道宽度方向速度分布图
    Fig. 6. Velocity distribution of water molecules along the width of different nanochannel widths.不同纳米通道宽度内水分子沿通道宽度方向速度分布图
    Velocity distributions corresponding to different layer models.不同层数模型对应的速度分布图
    Fig. 7. Velocity distributions corresponding to different layer models.不同层数模型对应的速度分布图
    Atomsε/kcal·mol–1σ
    P-P0.367603.43800
    O-O0.162753.16435
    P-O0.244603.30120
    Table 1. Parameter values of L-J potential function
    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10126.33055.79904.78183.5462
    1.5 × 10128.98478.79796.88675.8156
    2.0 × 101213.491212.969410.69957.5839
    Table 2.

    Statistical table of water molecule boundary slip velocity VS corresponding to different accelerations in different chiral conditions.

    不同手性情况中, 不同加速度对应的水分子边界滑移速度VS统计表

    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10120.11820.12090.11160.1212
    1.5 × 10120.11930.11730.11230.1168
    2.0 × 10120.11710.12030.12010.1183
    Table 3.

    Distribution of water molecular viscosity coefficient μ of simulation systems with different chirality under different acceleration conditions.

    不同手性的模拟系统在不同加速度条件下的水分子黏度系数μ分布表

    H/nm 3456
    VS/m·s–14.02674.35475.80057.5839
    Table 4.

    Boundary slip of water molecules at different nanochannels widths.

    不同纳米通道宽度内水分子的边界滑移表

    VS/m·s–1μ/mPa·s Ew-BP/kcal·mol–1·nm–2
    MonolayerBilayerMonolayerBilayerMonolayerBilayer
    13.491212.92560.11710.1216–13.7663–13.9138
    37.4°12.969412.44600.12030.1204–13.7797–13.9285
    Table 5.

    Comparison of the interfacial parameters for the models with different BP layers.

    不同黑磷层数纳米通道模型中流固界面参数对比

    Zhong-Qiang Zhang, Han-Lun Liu, Jin-Wei Fan, Jian-Ning Ding, Guang-Gui Cheng. Pressure-driven fluid flow characteristics in black phosphorus nanochannels[J]. Acta Physica Sinica, 2019, 68(17): 170202-1
    Download Citation