• Acta Photonica Sinica
  • Vol. 48, Issue 4, 427001 (2019)
SUN Tao1、2、*, WANG Yang1、2, LI Jian1、2, and WANG Qin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20194804.0427001 Cite this Article
    SUN Tao, WANG Yang, LI Jian, WANG Qin. Experimentally Manipulating Hong-Ou-Mandel Interference with Filters[J]. Acta Photonica Sinica, 2019, 48(4): 427001 Copy Citation Text show less
    References

    [1] HONG C K, OU Z Y, MANDEL A L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

    [2] YUAN Z S, BAO X H, LU C Y, et al. Entangled photons and quantum communication[J]. Physics Reports, 2010, 497(1): 1-40.

    [3] PAN J W, CHEN Z B, LU C Y, et al. Multiphoton entanglement and interferometry[J]. Reviews of Modern Physics, 2012, 84(2): 777-838.

    [4] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80: 3891-3894.

    [5] WANG X L, CHEN L K, LI W, et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 2016, 117(21): 210502.

    [6] STEVENSON R M, SALTER C L, NILSSON J, et al. Indistinguishable entangled photons generated by a light-emitting diode[J]. Physical Review Letters, 2012, 108(4): 040503.

    [7] CHEN Y, ECKER S, WENGEROWSKY S, et al. Polarization entanglement by time-reversed Hong-Ou-Mandel interference[J]. Physical Review Letters, 2018, 121(20): 200502.

    [8] GERRITS T, MARSILI F,VERMA V B, et al. Spectral correlation measurements at the Hong-Ou-Mandel interference dip[J]. Physical Review A, 2015, 91(1): 013830.

    [9] IMANY P, ODELE O D, ALSHAYKH M S, et al. Frequency-domain Hong-Ou-Mandel interference with linear optics[J]. Optics Letters, 2018, 43(12): 2760-2763.

    [10] WANG Q, HUANG Y F, SUN F W, et al. A "which way'' experiment of two-photon interference[J]. Chinese Physics Letters, 2005, 22(2): 335.

    [11] WANG Q, ZHANG Y S, HUANG Y F, et al. Simulating the fourth-order interference phenomenon of anyons with photon pairs[J]. The European Physical Journal D, 2007, 42(1): 179-182.

    [12] TOYODA K, HIJI R, NOGUCHI A, et al. Hong-Ou-Mandel interference of two phonons in trapped ions[J]. Nature, 2015, 527(7576): 74-77.

    [13] CHANELIERE T, MATSUKEVICH D N, JENKINS S D, et al. Quantum interference of electromagnetic fields from remote quantum memories[J]. Physical Review Letters, 2007, 98(11): 113602.

    [14] ZHANG C, HUANG Y F, ZHANG C J, et al. Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state[J]. Optics Express, 2016, 24(24): 27059-27069.

    [15] ZHANG C, HUANG Y F, LIU B H, et al. Experimental generation of a high-fidelity four-photon linear cluster state[J]. Physical Review A, 2016, 93(6): 062329.

    [16] HUANG Y F, LIU B H, PENG L, et al. Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state[J]. Nature Communications, 2011, 2: 546.

    [17] KIM Y, BJRK G, KIM Y H. Experimental characterization of quantum polarization of three-photon states[J].Physical Review A, 2017, 96(3): 033840.

    [18] NAMBU Y, USAMI K, TSUDA Y, et al. Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses[J]. Physical Review A, 2002, 66(3): 033816.

    [19] O'BRIEN J L, PRYDE G J, WHITE A G, et al. Demonstration of an all-optical quantum controlled-NOT gate[J]. Nature, 2003, 426(6964): 264-267.

    [20] RALPH T C, LANGFORD N K, BELL T B, et al. Linear optical controlled-NOT gate in the coincidence basis[J]. Physical Review A, 2002, 65(6): 062324.

    [21] SANGOUARD N, SIMON C, DE RIEDMATTEN H, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Reviews of Modern Physics, 2011, 83(1): 33-80.

    [22] NAGALI E, SANSONI L, SCIARRINO F, et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-7Ou-7Mandel coalescence[J]. Nature Photonics, 2009, 3(12): 720-723.

    [23] STEANE A. Quantum computing[J]. Reports on Progress in Physics, 1998, 61(2): 117-172.

    [24] LO H K, CURTY M, QI B. Measurement-device-independent quantum key distribution[J].Physical Review Letters, 2012, 108(13): 130503.

    [25] GISIN N, PIRONIO S, SANGOUARD N. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier[J]. Physical Review Letters, 2010, 105(7): 070501.

    [26] KOBAYASHI T, IKUTA R,YASUI S, et al. Frequency-domain Hong-Ou-Mandel interference[J]. Nature Photonics, 2016, 10(7): 441-444.

    [27] ZHANG Y, PRABHAKAR S, ROSALES-GUZMN C, et al. Hong-Ou-Mandel interference of entangled Hermite-Gauss modes[J]. Physical Review A, 2016, 94(3): 033855.

    [28] TSUJIMOTO Y, SUGIURA Y, TANAKA M, et al. High visibility Hong-Ou-Mandel interference via a time-resolved coincidence measurement[J]. Optics Express, 2017, 25(11): 12069-12080.

    [29] KIM H, PARK H S, CHOI S K. Three-photon N00N states generated by photon subtraction from double photon pairs[J]. Optics Express, 2009, 17(22): 19720-19726.

    [30] KIM Y S, KWON O, LEE S M, et al. Observation of Young′s double-slit interference with the three-photon N00N state[J]. Optics Express, 2011, 19(25): 24957-24966.

    [31] BRACZYK A M. Hong-ou-mandel interference[J]. arXiv: 1711.00080, 2017.

    SUN Tao, WANG Yang, LI Jian, WANG Qin. Experimentally Manipulating Hong-Ou-Mandel Interference with Filters[J]. Acta Photonica Sinica, 2019, 48(4): 427001
    Download Citation