• Infrared Technology
  • Vol. 42, Issue 5, 405 (2020)
LIRujie 1、2、3, Libin TANG1、2、3、*, Yuping ZHANG1、3, and Qing ZHAO2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    LIRujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology, 2020, 42(5): 405 Copy Citation Text show less
    References

    [1] Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

         Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

         Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

         Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

         Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

         Lohse S Emedicine, Murphy C J, Am J. Applications of colloidal inorganic nanoparticles: to energy[J]. Chem. Soc., 2012, 134(38): 15607-15620.

    [2] Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

         Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

         Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

         Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

         Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

         Schaller R D, Sykora M, J M P, et al. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers[J]. Nano Letters, 2006, 6(3): 424-429.

    [3] QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

         QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

         QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

         QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

         QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

         QIN H, NIU Y, MENG R, et al. Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements[J]. J. Am. Chem. Soc., 2014, 136(1): 179-187.

    [4] Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

         Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

         Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

         Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

         Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

         Lance M Wheeler, Nicholas C Anderson, Peter K B Palomaki, et al. Silyl Radical Abstraction in the Functionalization of Plasma- Synthesized Silicon Nanocrystals[J]. Chem. Mater., 2015, 27: 6869-6878.

    [5] NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

         NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

         NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

         NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

         NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

         NI Zhenyi, MA Lingling, DU Sichao, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene- Based Hybrid Phototransistors[J]. ACS Nano, 2017, 11: 9854-9862.

    [6] Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

         Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

         Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

         Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

         Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

         Ruddy D A, Johnson J C, Smith E R, et al. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals[J]. ACS Nano, 2010, 4: 7459-7466.

    [7] Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

         Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

         Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

         Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

         Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

         Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183.

    [8] Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

         Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

         Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

         Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

         Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

         Galileo Sarasqueta, Kaushik Roy, Choudhury Franky So, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Chem. Mater., 2010, 22: 496-3501.

    [9] Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

         Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

         Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

         Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

         Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

         Pietryga J M, SchallerR D, Werder D, et al. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots[J]. J. Am. Chem. Soc., 2004, 126: 11752-11753.

    [10] Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

         Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

         Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

         Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

         Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

         Loredana Protesescu, Tanja Zìnd, Maryna I Bodnarchuk, et al. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTeCore– Shell Colloidal quantum dots[J]. Chem. Phys. Chem., 2016, 17: 670-674.

    [11] GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

         GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

         GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

         GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

         GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

         GU Yue, TANG Libin, GUO Xiaopeng, et al. Preparation and photoelectric properties of cadmium sulfide quantum dots[J]. Chin. Phys. B, 2019, 28(4): 047803.

    [12] Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

         Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

         Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

         Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

         Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

         Vidya P Deviprasad, Hemant Ghadi, Debabrata Das, et al. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model[J]. J. Alloys and Compounds, 2019, 804: 8-26.

    [13] David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

         David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

         David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

         David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

         David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

         David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD) [C]//Proc. of SPIE, 2012: 835332-2.

    [14] ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

         ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

         ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

         ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

         ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

         ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window[J]. ACS Nano, 2012, 6: 695-3702.

    [15] ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

         ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

         ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

         ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

         ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

         ZHU C N, JIANG P, ZHANG Z L, et al. Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window[J]. ACS Appl. Mater. Interfaces, 2013, 5: 1186-1189.

    [16] Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

         Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

         Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

         Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

         Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

         Mukherjee S, Maiti R, Katiyar A K, et al. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices[J]. Scientific Reports, 2016, 6: 29016.

    [17] LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

         LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

         LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

         LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

         LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

         LI Yao, TANG Libin, LI Rujie, et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector[J]. Chinese Physics B, 2019, 28(3): 037801.

    [18] ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

         ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

         ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

         ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

         ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

         ZHU Bingqing, MENG Yuchen, ZHU Qiang, et al. Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots[J]. Adv. Mater. Technol., 2019, 4: 1900354.

    [19] LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

         LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

         LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

         LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

         LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

         LI H, KANG Z, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. J. Materials Chemistry, 2012, 22(46): 24230.

    [20] PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

         PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

         PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

         PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

         PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

         PAN D, ZHANG J, LI Z, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738.

    [21] WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

         WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

         WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

         WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

         WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

         WANG X, SUN G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.

    [22] LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

         LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

         LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

         LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

         LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

         LI Xueming, LAO Shuping, TANG Libin, et al. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots[J]. Nanoscale, 2014, 6(10): 5323-5328.

    [23] Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

         Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

         Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

         Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

         Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

         Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Advanced Functional Materials, 2009, 19(5): 805-811.

    [24] ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

         ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

         ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

         ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

         ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

         ZHAI C, ZHU M, PANG F, et al. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 4772-4980.

    [25] SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

         SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

         SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

         SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

         SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

         SONG T, ZHANG F, LEI X, et al. Core–shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale, 2012, 4(4): 1336.

    [26] LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

         LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

         LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

         LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

         LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

         LI Y, ZHU J, HUANG Y, et al. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots[J]. Nanoscale, 2015, 7(21): 9902-9907.

    [27] GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

         GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

         GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

         GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

         GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

         GAO W, WANG M, RAN C, et al. Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2014, 51(9): 1709-1712.

    [28] Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

         Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

         Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

         Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

         Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

         Chaudhuri R G, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem. Rev., 2012, 112(4): 2373-2433.

    [29] La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

         La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

         La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

         La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

         La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

         La Mer, Dinegar V K, Theory R H. Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.

    [30] Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

         Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

         Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

         Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

         Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

         Brandi M Cossairt. Light on Indium Phosphide Quantum Dots: Understanding the Interplay among Precursor Conversion, Nucleation, and Growth[J]. Chem. Mater., 2016, 28: 7181-7189.

    [31] Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

         Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

         Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

         Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

         Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

         Semonin O E, Luther J M, Beard M C. Quantum Dots for Next-Generation Photovoltaics[J]. Mater. Today, 2012, 15: 508-515.

    [32] Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

    [33] LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

         LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

         LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

         LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

         LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

         LU H P, Brutchey R L. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N-Heterocyclic Carbene Synthons[J]. Chem. Mater., 2017, 29: 1396-1403.

    [34] Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

         Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

         Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

         Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

         Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

         Talapin DV, Lee J, Kovalenko M V, et al. Prospects of colloidal nano crystalsfor electronic and optoelectronic applications[J]. Chem. Rev., 2010, 110(1): 389-458.

    [35] Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

         Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

         Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

         Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

         Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

         Mackenzie J D, Bescher E P. Chemical routes in the synthesis of nano material; using the sol-gel process[J]. Acc. Chem. Res., 2007, 40(9): 810-818.

    [36] Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

         Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

         Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

         Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

         Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

         Manna L, Scher E C, Alivisatos A R. Synthesisof soluble and process,able CaSe nanocrys[J]. J. Am Chem Soc., 2000, 122: 12700.

    [38] Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

         Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

         Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

         Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

         Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

         Taleb Makad, Uri Banin. Synthesis andproperties ofCdSe/ZnS coreshell nanorods[J]. Chem Malr., 2003, 15: 3955.

    [39] PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

         PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

         PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

         PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

         PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

         PENG Z A, PENG X G. Formation of Hight-Quality CdTe, CdSe, and CdS Nano crystals USillg CdO as PreCursor[J]. J. AIll. Chem. Soc., 2001, 123: 83-184.

    [40] Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

         Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

         Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

         Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

         Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

         Scott L Cumberland, Khalid M Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials[J]. Chem. Mater., 2002, 14(4): 1576-1584.

    [41] Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

         Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

         Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

         Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

         Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

         Marcus Jones, Shun S Lo, Gregory D Scholes. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics[J]. PNAS, 2009, 106(9): 3011-3016.

    [42] Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

         Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

         Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

         Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

         Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

         Haggatas W, Azad Malik M, Moteralli M. synthesis and characterization of some mixed alkylthiocarbamates of gallium and indium, precursors for III-VI matedals[J]. Chem Mater, 1995, 7(4): 716.

    [43] Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

         Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

         Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

         Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

         Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

         Nikolai GaponikDmitri V, TalapinAndrey L, RogachAlexander Eychmüller, et al. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents[J]. Nano Letters, 2002, 2(8): 803-806.

    [44] LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

         LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

         LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

         LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

         LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

         LI H, SHI Wan Y, SHIH W H. Non-heavy-metal ZnS quantum dots withbright blue photoluminescence by a one-step aqueous synthesis[J]. Nanotechnology, 2007, 205604: 1-6.

    [45] ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

         ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

         ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

         ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

         ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

         ZHUO Ding, LIN Min, CHEN Zhaolai, et al. Simple Synthesis of Highly Luninescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality[J]. Chem. Mater., 2011, 23: 4857-4862.

    [46] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers[J]. J. Am. Chem.Soc., 1992, 114(13): 5221-5230.

    [47] Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

         Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

         Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

         Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

         Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

         Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media[J]. J. Am. Chem. Soc., 1990, 112(4): 1327-1332.

    [48] Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

         Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

         Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

         Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

         Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

         Homer C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by X-ray photoelectron and auger spectroscoples[J]. J. Phys. Chem., 1992, 96(9): 3812-3817.

    [49] Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

         Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

         Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

         Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

         Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

         Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ullrafine particles inreverse micelles[J]. Eng Chem Res., 1994, 33(12): 3262.

    [50] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

         Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covaiently bound to metals Hrface with self-assemble monolaye[J]. J. Am. Chem. Soc., 1992, 114(13): 5221.

    [51] Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

         Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

         Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

         Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

         Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

         Ohde H, Ohde M, Bailey E, et a1. Water-in-CO2microemulsions as nanoreactors for synflaesizing CdS and ZnS nanoparticles in supercfiticalCO2[J]. Nano. Let., 2002, 2(7): 721.

    [52] Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

         Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

         Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

         Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

         Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

         Ghosh S, Saha M, Ashok V D, et al. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots[J]. Nanotechnology, 2016, 27(15): 155708.

    [53] Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

         Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

         Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

         Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

         Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

         Nagesha D K, Liang X, Mamedov A A, et al. In2S3 Nanocolloids with Excitonic Emission: In2S3 vs CdS Comparative Study of Optical and Structural Characteristics[J]. J. Physical Chemistry B, 2001, 105(31): 7490-7498.

    [54] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.

    [55] Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

         Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

         Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

         Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

         Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

         Nicolau Y F. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process[J]. Appli. Surface Science, 1985, 22-23 (part-P2): 1061-1074.

    [56] DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

         DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

         DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

         DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

         DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

         DUAN J, TANG Q, HE B, et al. Efficient In2S3 Quantum dot sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%[J]. Electrochimica Acta, 2014, 139: 381-385.

    [57] Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

         Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

         Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

         Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

         Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

         Yasuhiro Shirasaki1, Geoffrey J Supran, Moungi G Bawendi, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013(7): 13-23.

    [58] Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

         Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

         Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

         Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

         Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

         Kim L A, Anikeeva P O, Coe-Sullivan S A, et al. Contact Printing of Quantum Dot Light-Emitting Devices[J]. NANO Letters, 2008, 8(12): 4513-4517.

    [59] Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

         Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

         Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

         Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

         Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

         Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.

    [60] XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

         XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

         XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

         XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

         XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

         XU J, Voznyy O, LIU M, et al. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids[J]. Nat. Nanotechnol., 2018, 13: 456-462.

    [61] WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

         WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

         WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

         WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

         WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

         WANG Y, Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. Chemical Physics Letters, 1992, 200(1-2): 71-75.

    [62] Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

         Murray C B, Norris D J, Bawendi M G. Synthesis and characterizationof nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.

    [63] Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

         Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

         Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

         Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

         Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

         Guyot-Sionnest P, WANG C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films[J]. J. Phys. Chem. B, 2003, 107: 7355-7359.

    [64] YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

         YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

         YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

         YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

         YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

         YU C, WANG P. Guyot-Sionnest. N-type conducting CdSe nanocrystalsolids[J]. Science, 2003, 300: 1277-1280.

    [65] Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

         Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

         Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

         Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

         Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

         Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency[J]. Phys. Rev. B, 2004, 70: 195327.

    [66] OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

         OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

         OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

         OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

         OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

         OertelD C, Bawendi M G, Arango A C, et al. Photodetectors based on treated CdSe quantum-dot films[J]. Appl. Phys. Lett., 2005, 87: 213505.

    [67] Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

         Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

         Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

         Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

         Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

         Murray C B, SUN S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices[J]. J. Res. Dev., 2001, 45: 47-56.

    [68] Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

         Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater., 2003, 15: 1844-1849.

    [69] Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

         Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

         Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

         Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

         Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

         Guzelian A A, Banin U, Kadavanich A V, et al. Colloidalchemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Appl. Phys. Lett., 1996, 69: 1432.

    [70] DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

         DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

         DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

         DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

         DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

         DU H, CHEN C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Lett., 2002, 2: 1321-1324.

    [71] Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

         Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

         Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

         Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

         Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

         Wehrenberg B L, WANG C, Guyot-Sionnest P. Interband and intrabandoptical studies of PbSe colloidal quantum dots[J]. J. Phys. Chem. B, 2002, 106: 10634-10640.

    [72] Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

         Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

         Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

         Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

         Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

         Mcdonald S A, Cyr P W, Levina L, et al. Photoconductivityfrom PbS-nanocrystal/semiconducting polymer composites for solutionprocessible, quantum-size tunable infrared photodetectors[J]. Appl. Phys. Lett., 2005, 85: 2089-2091.

    [73] Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

         Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

         Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

         Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

         Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

         Konstantatos G, Howard I, Fischer A, etal.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442: 180.

    [74] Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

         Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

         Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

         Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

         Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

         Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies[J]. Nat. Photonics, 2016, 10: 81-92.

    [75] Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

         Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

         Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

         Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

         Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

         Manders J R, LAI TH, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processedinorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24: 7205-7210.

    [76] Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

         Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

         Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

         Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

         Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

         Klem E J D, Gregory C, Temple D, et al. PbS colloidal quantum dotphotodiodes for low-cost SWIR sensing[C]//Proc. SPIE, 2015, 9451: 945104.

    [77] Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

         Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

         Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

         Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

         Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

         Green M, Mirzai H. Synthetic routes to mercury chalcogenide quantumdots[J]. J. Mater. Chem. C, 2018, 6: 5097.

    [78] RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

         RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

         RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

         RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

         RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

         RogachA, Kershaw S V, Burt M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Adv. Mater., 1999, 11: 552-555.

    [79] Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

         Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

         Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

         Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

         Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

         Kim H, Cho K, Park B, et al. Optoelectronic characteristics of close-packed HgTe nanoparticles in the infraredrange[J]. Solid State Commun., 2006, 137: 315-319.

    [80] B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

         B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

         B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

         B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

         B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

         B.berl M, Kovalenko M V, Gamerith S, et al. Inkjet-printed nanocrystal photo detectors operating up to 3μm wavelengths[J]. Adv. Mater., 2007, 19: 3574-3578.

    [81] Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

         Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

         Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

         Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

         Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

         Keuleyan S, Lhuillier E, Brajuskovic V, et al. MidinfraredHgTe colloidal quantum dot photodetectors[J]. Nat. Photonics, 2011, 5(8): 489.

    [82] Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

         Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

         Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

         Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

         Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

         Keuleyan S E, Guyot-Sionnest P, Delerue C, et al. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12.m[J]. ACS Nano, 2014, 8(8): 8676-8868.

    [83] Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

         Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

         Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

         Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

         Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

         Goubet N, Jagtap A, Livache C, et al. Terahertz HgTe nanocrystals: Beyond confinement[J]. J. Am. Chem. Soc., 2018, 140: 5033-5036.

    [84] Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

    [85] Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[J]. Nanostruct. Devices Appl., 2016, 9933: 993303.

    [86] ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

         ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

         ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

         ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

         ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

         ZHAO Yaolong, LI Lingfei, LIU Shuaishuai, et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes[J]. Nanotechnology, 2020, 31: 145602-145609.

    [87] Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

         Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

         Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

         Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

         Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

         Stylianos Siontasa, LI Dongfang, WANG Haobei, et al. High- erformance germanium quantum dot photodetectors in the visible and near infrared[J]. Mater. Sci. in Semiconductor Processing, 2019, 92: 19-27.

    [88] Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

         Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

         Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

         Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

         Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

         Nayyera Mahmoud, Willem Walravens, Jakob Kuhs, et al. Micro-Transfer-Printing of Al2O3 Capped Short-Wave-Infrared PbS Quantum Dot Photoconductors[J]. ACS Appl. Nano Mater., 2019, 2: 299-306.

    [89] Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

         Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

         Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

         Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

         Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

         Rauch T, Berl M B, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

    [90] Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

         Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

         Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

         Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

         Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

         Mukherjee S, Jana S, Sinha T K, et al. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids[J]. Nanoscale Adv., 2019, 1: 3279.

    [91] Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

         Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Appl. Phys. Lett., 2015, 107: 253104.

    [92] Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

         Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

         Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

         Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

         Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

         Ciani A J, Pimpinella R E, Grein C H, et al. Colloidal quantum dots for low-cost MWIR imaging[C]//Proc. SPIE, 2016, 9819: 981919.

    [93] Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

         Buurma C, Pimpinella R E, Ciani A J, et al. MWIR imaging with low cost colloidal quantum dot films[C]//SPIE Nanoscience + Engineering, 2016: 9933.

    [94] CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

         CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

         CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

         CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

         CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

         CHEN Mengyu, SHAO Lei, Kershaw Stephen V, et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. Acs Nano, 2014, 8 (8): 8208-8216.

    [95] TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

         TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

         TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

         TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

         TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

         TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nat. Photonics, 2019. doi:10.1038/s41566-019-0362- 1.

    [96] Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

         Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

         Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

         Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

         Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

         Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on grapheme-CMOS integration[J]. Nat. Photonics, 2017, 11: 366-371.

    [97] Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Oganic- and QD-based image sensors integrated on 0.13.m CMOS ROIC for high resolution, multispectral infrared imaging[C]//SPIE, 2016: 11407-43.

    [98] Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

         Epimitheas Georgitzikis, Pawel E Malinowski, LI Yunlong, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[C]//IEEE Sensors, 2019: 1558- 1748.

    [99] Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

         Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

         Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

         Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

         Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

         Epimitheas Georgitzikis, Pawel E Malinowski, Jorick Maes, et al. Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering[J]. Adv. Funct. Mater., 2018, 1804502: 1-8.

    LIRujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology, 2020, 42(5): 405
    Download Citation